找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Sphere Arrangements – the Discrete Geometric Side; Károly Bezdek Book 2013 Springer International Publishing Switzerland 2013

[復(fù)制鏈接]
樓主: 弄碎
11#
發(fā)表于 2025-3-23 11:03:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:44:06 | 只看該作者
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
13#
發(fā)表于 2025-3-23 18:36:16 | 只看該作者
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
14#
發(fā)表于 2025-3-24 01:40:59 | 只看該作者
Unit Sphere Packings,e emphases are on the following five topics: the contact number problem (generalizing the problem of kissing numbers), lower bounds for Voronoi cells (studying Voronoi cells from volumetric point of view), dense sphere packings in Euclidean 3-space (studying a strong version of the Kepler conjecture
15#
發(fā)表于 2025-3-24 04:22:17 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:56 | 只看該作者
Contractions of Sphere Arrangements,res. The research on this fundamental topic started with the conjecture of E. T. Poulsen and M. Kneser in the late 1950s. In this chapter we survey the status of the long-standing Kneser–Poulsen conjecture in Euclidean as well as in non-Euclidean spaces.
17#
發(fā)表于 2025-3-24 12:19:29 | 只看該作者
Proofs on Contractions of Sphere Arrangements,r dimensional. Second, we prove an analogue of the Kneser–Poulsen conjecture for hemispheres in spherical .-space. Third, we give a proof of a Kneser–Poulsen-type theorem for convex polyhedra in hyperbolic 3-space.
18#
發(fā)表于 2025-3-24 17:56:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:13:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 红桥区| 虞城县| 合阳县| 察雅县| 鄄城县| 黔西县| 奈曼旗| 五莲县| 五指山市| 宽甸| 华坪县| 岚皋县| 新巴尔虎右旗| 荆门市| 廉江市| 永胜县| 琼结县| 绵竹市| 天峨县| 宜昌市| 永新县| 通海县| 沅陵县| 榆社县| 治县。| 收藏| 莱阳市| 同仁县| 镇江市| 遵义市| 达拉特旗| 辽宁省| 习水县| 呈贡县| 四平市| 亳州市| 中山市| 东阿县| 胶南市| 高唐县|