找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Sphere Arrangements – the Discrete Geometric Side; Károly Bezdek Book 2013 Springer International Publishing Switzerland 2013

[復(fù)制鏈接]
樓主: 弄碎
21#
發(fā)表于 2025-3-25 04:09:37 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:14 | 只看該作者
Book 2013ometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, th
23#
發(fā)表于 2025-3-25 13:36:11 | 只看該作者
Proofs on Unit Sphere Packings,ng a unit ball. On the one hand, it leads to a new version of the Kepler problem on unit sphere packings on the other hand, it generates a new relative of Kelvin’s foam problem. Finally, we find sufficient conditions for sphere packings being uniformly stable, a property that holds for all densest lattice sphere packings up to dimension 8.
24#
發(fā)表于 2025-3-25 18:32:03 | 只看該作者
Proofs on Ball-Polyhedra and Spindle Convex Bodies,olyhedra in Euclidean .-space. Finally, we give a proof of the long-standing Boltyanski-Hadwiger illumination conjecture for fat spindle convex bodies in Euclidean dimensions greater than or equal to 15.
25#
發(fā)表于 2025-3-25 20:24:03 | 只看該作者
1069-5273 tics and computer science.Acts as a short introduction to im.This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate
26#
發(fā)表于 2025-3-26 01:29:53 | 只看該作者
Unit Sphere Packings,(studying Voronoi cells from volumetric point of view), dense sphere packings in Euclidean 3-space (studying a strong version of the Kepler conjecture), sphere packings in Euclidean dimensions higher than 3, and uniformly stable sphere packings.
27#
發(fā)表于 2025-3-26 08:23:06 | 只看該作者
Ball-Polyhedra and Spindle Convex Bodies, more details, is on global and local rigidity of ball-polyhedra in Euclidean 3-space. Finally, we investigate the status of the long-standing illumination conjecture of V. G. Boltyanski and H. Hadwiger from 1960 for ball-polyhedra (resp., spindle convex bodies) in Euclidean .-space.
28#
發(fā)表于 2025-3-26 09:56:05 | 只看該作者
Book 2013ere packings and tilings have a very strong connection to number theory, coding, groups, and mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major
29#
發(fā)表于 2025-3-26 15:45:26 | 只看該作者
1069-5273 nd mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major 978-1-4939-0032-9978-1-4614-8118-8Series ISSN 1069-5273 Series E-ISSN 2194-3079
30#
發(fā)表于 2025-3-26 17:30:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朔州市| 兴安县| 东明县| 来宾市| 阳泉市| 漳浦县| 旺苍县| 宁海县| 南安市| 昌邑市| 巴东县| 资源县| 溧水县| 乡宁县| 曲周县| 保山市| 通海县| 泰安市| 满洲里市| 施甸县| 南康市| 香河县| 彭山县| 江永县| 方正县| 巴青县| 周口市| 新宾| 墨玉县| 阜阳市| 中宁县| 四子王旗| 江口县| 凤山市| 南昌市| 上犹县| 永州市| 江达县| 宝坻区| 河东区| 阿巴嘎旗|