找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Formal and Rigid Geometry; Siegfried Bosch Book 2014 Springer International Publishing Switzerland 2014 Formal blowing-up.Form

[復(fù)制鏈接]
樓主: 大小
11#
發(fā)表于 2025-3-23 11:27:16 | 只看該作者
Coherent Sheaves on Rigid SpacesIn this chapter we study the cohomology of coherent modules on rigid spaces and give a proof of an advanced result of Kiehl, the Proper Mapping Theorem.
12#
發(fā)表于 2025-3-23 15:09:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:16:39 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:45 | 只看該作者
More Advanced StuffWe introduce relative rigid spaces and, as an example, construct Raynaud’s universal Tate curve. Then, after a brief look at the Zariski–Riemann space, some advanced results on formal models of rigid spaces are reviewed.
15#
發(fā)表于 2025-3-24 03:53:28 | 只看該作者
isease. This is accomplished by real time monitoring of molecular signaling at the cellular and tissue level. During the past decade, there has been an explosion in this field, resulting in revolutionary advances in determining the microstructure and function of living systems. These discoveries hav
16#
發(fā)表于 2025-3-24 07:16:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:20 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:14 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:39 | 只看該作者
Siegfried Boschisease. This is accomplished by real time monitoring of molecular signaling at the cellular and tissue level. During the past decade, there has been an explosion in this field, resulting in revolutionary advances in determining the microstructure and function of living systems. These discoveries hav
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 凤凰县| 武宣县| 江山市| 陆良县| 张家口市| 山阴县| 阳城县| 永德县| 江华| 邯郸市| 海晏县| 宾阳县| 阿巴嘎旗| 浑源县| 旬邑县| 塔城市| 米易县| 德州市| 陇南市| 应城市| 岑巩县| 郎溪县| 青川县| 德安县| 武城县| 潞西市| 浑源县| 高雄市| 海盐县| 平顺县| 新乡市| 兰州市| 烟台市| 砚山县| 财经| 龙南县| 襄樊市| 常德市| 曲松县| 漠河县|