找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Formal and Rigid Geometry; Siegfried Bosch Book 2014 Springer International Publishing Switzerland 2014 Formal blowing-up.Form

[復(fù)制鏈接]
樓主: 大小
11#
發(fā)表于 2025-3-23 11:27:16 | 只看該作者
Coherent Sheaves on Rigid SpacesIn this chapter we study the cohomology of coherent modules on rigid spaces and give a proof of an advanced result of Kiehl, the Proper Mapping Theorem.
12#
發(fā)表于 2025-3-23 15:09:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:16:39 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:45 | 只看該作者
More Advanced StuffWe introduce relative rigid spaces and, as an example, construct Raynaud’s universal Tate curve. Then, after a brief look at the Zariski–Riemann space, some advanced results on formal models of rigid spaces are reviewed.
15#
發(fā)表于 2025-3-24 03:53:28 | 只看該作者
isease. This is accomplished by real time monitoring of molecular signaling at the cellular and tissue level. During the past decade, there has been an explosion in this field, resulting in revolutionary advances in determining the microstructure and function of living systems. These discoveries hav
16#
發(fā)表于 2025-3-24 07:16:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:20 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:14 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:39 | 只看該作者
Siegfried Boschisease. This is accomplished by real time monitoring of molecular signaling at the cellular and tissue level. During the past decade, there has been an explosion in this field, resulting in revolutionary advances in determining the microstructure and function of living systems. These discoveries hav
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳区| 洱源县| 射洪县| 平陆县| 兴海县| 常德市| 威远县| 平潭县| 溧水县| 淮北市| 海门市| 元氏县| 林芝县| 六盘水市| 台中市| 盘锦市| 石景山区| 申扎县| 汉源县| 博兴县| 新巴尔虎左旗| 南乐县| 泗阳县| 松江区| 汉源县| 武川县| 新田县| 翁牛特旗| 苍梧县| 高碑店市| 浑源县| 微山县| 佛教| 凤台县| 许昌县| 云和县| 平江县| 吉首市| 柳州市| 荔波县| 若尔盖县|