找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Formal and Rigid Geometry; Siegfried Bosch Book 2014 Springer International Publishing Switzerland 2014 Formal blowing-up.Form

[復(fù)制鏈接]
查看: 46963|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:51:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lectures on Formal and Rigid Geometry
編輯Siegfried Bosch
視頻videohttp://file.papertrans.cn/584/583511/583511.mp4
概述Provides rapid access to advanced Rigid Geometry.Offers self-contained content.Includes Tate’s classical theory, as well as Raynaud’s approach using formal schemes
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Lectures on Formal and Rigid Geometry;  Siegfried Bosch Book 2014 Springer International Publishing Switzerland 2014 Formal blowing-up.Form
描述.The aim of this work is to offer a concise and self-contained ‘lecture-style‘ introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader‘s level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work..This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster‘s Collaborative Research Center "Geometrical Structures in Mathematics"..
出版日期Book 2014
關(guān)鍵詞Formal blowing-up; Formal scheme; Rigid analytic space; Tate algebra; Tate‘s Acyclicity Theorem
版次1
doihttps://doi.org/10.1007/978-3-319-04417-0
isbn_softcover978-3-319-04416-3
isbn_ebook978-3-319-04417-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Lectures on Formal and Rigid Geometry影響因子(影響力)




書目名稱Lectures on Formal and Rigid Geometry影響因子(影響力)學(xué)科排名




書目名稱Lectures on Formal and Rigid Geometry網(wǎng)絡(luò)公開度




書目名稱Lectures on Formal and Rigid Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lectures on Formal and Rigid Geometry被引頻次




書目名稱Lectures on Formal and Rigid Geometry被引頻次學(xué)科排名




書目名稱Lectures on Formal and Rigid Geometry年度引用




書目名稱Lectures on Formal and Rigid Geometry年度引用學(xué)科排名




書目名稱Lectures on Formal and Rigid Geometry讀者反饋




書目名稱Lectures on Formal and Rigid Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:13 | 只看該作者
978-3-319-04416-3Springer International Publishing Switzerland 2014
地板
發(fā)表于 2025-3-22 07:54:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:47:22 | 只看該作者
https://doi.org/10.1007/978-3-319-04417-0Formal blowing-up; Formal scheme; Rigid analytic space; Tate algebra; Tate‘s Acyclicity Theorem
6#
發(fā)表于 2025-3-22 16:45:01 | 只看該作者
Introduction,Classical rigid geometry may be viewed as a theory of analytic functions over local fields or, more generally, over fields that are complete under a non-Archimedean absolute value. For example, for any prime ., the .-adic numbers constitute such a field.
7#
發(fā)表于 2025-3-22 20:56:23 | 只看該作者
Tate AlgebrasThe Tate algebra over a complete non-Archimedean field ., say in a set of . variables, consists of all formal power series whose coefficients form a zero sequence in .. In the present chapter we develop Weierstra? Theory and use it to prove basic properties of Tate algebras.
8#
發(fā)表于 2025-3-22 23:26:47 | 只看該作者
9#
發(fā)表于 2025-3-23 03:31:19 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱阳市| 东丽区| 卫辉市| 新绛县| 利川市| 黎川县| 昔阳县| 梧州市| 新乡市| 怀柔区| 邓州市| 岚皋县| 洪雅县| 贵南县| 平邑县| 景泰县| 乌兰浩特市| 拜泉县| 武宣县| 河源市| 宁国市| 大田县| 沁源县| 阜平县| 大埔区| 潮州市| 嵊州市| 嘉定区| 庄浪县| 上思县| 桃园市| 阳谷县| 岫岩| 上栗县| 黔西| 营口市| 南岸区| 建湖县| 十堰市| 太谷县| 遂川县|