找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures and Surveys on G2-Manifolds and Related Topics; Spiro Karigiannis,Naichung Conan Leung,Jason D. Lo Book 2020 Springer Science+Bus

[復(fù)制鏈接]
樓主: 開脫
31#
發(fā)表于 2025-3-26 21:20:35 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:40 | 只看該作者
Constructions of Compact ,-Holonomy Manifoldssolutions of singularities of appropriately chosen 7-dimensional orbifolds, with the help of asymptotically locally Euclidean spaces. Another method uses the gluing of two asymptotically cylindrical pieces and requires a certain matching condition for their cross-sections ‘a(chǎn)t infinity’.
33#
發(fā)表于 2025-3-27 05:22:15 | 只看該作者
34#
發(fā)表于 2025-3-27 10:56:23 | 只看該作者
Fr?licher–Nijenhuis Bracket on Manifolds with Special Holonomybles us to define the Fr?licher–Nijenhuis cohomologies which are analogues of the . and the Dolbeault cohomologies in K?hler geometry, and assigns an .-algebra to each associative submanifold. We provide several concrete computations of the Fr?licher–Nijenhuis cohomology.
35#
發(fā)表于 2025-3-27 17:25:25 | 只看該作者
36#
發(fā)表于 2025-3-27 19:11:20 | 只看該作者
37#
發(fā)表于 2025-3-27 23:56:27 | 只看該作者
Deformations of Calibrated Submanifolds with Boundaryalibrated submanifolds are assumed compact with a non-empty boundary which is constrained to move in a particular fixed submanifold. The results extend McLean’s deformation theory previously developed for closed compact submanifolds.
38#
發(fā)表于 2025-3-28 04:09:03 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:51 | 只看該作者
Lectures and Surveys on G2-Manifolds and Related Topics978-1-0716-0577-6Series ISSN 1069-5265 Series E-ISSN 2194-1564
40#
發(fā)表于 2025-3-28 11:14:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德格县| 五台县| 赞皇县| 常宁市| 青川县| 梨树县| 三亚市| 三都| 论坛| 山东省| 龙江县| 黄浦区| 称多县| 观塘区| 宕昌县| 嘉义市| 安平县| 县级市| 蓝田县| 达州市| 农安县| 酉阳| 梁平县| 清丰县| 瑞安市| 车致| 姜堰市| 泸水县| 武邑县| 鹤壁市| 哈巴河县| 洛隆县| 东海县| 平武县| 河间市| 确山县| 万山特区| 太谷县| 和顺县| 新源县| 连山|