找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures and Surveys on G2-Manifolds and Related Topics; Spiro Karigiannis,Naichung Conan Leung,Jason D. Lo Book 2020 Springer Science+Bus

[復(fù)制鏈接]
樓主: 開脫
11#
發(fā)表于 2025-3-23 09:48:19 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:15 | 只看該作者
Introduction to , Geometryalgebraic structure in 7 dimensions that is the pointwise model for . geometry, using the octonions. The basics of .-structures are introduced, from a Riemannian geometric point of view, including a discussion of the torsion and its relation to curvature for a general .-structure, as well as the con
13#
發(fā)表于 2025-3-23 21:54:30 | 只看該作者
Constructions of Compact ,-Holonomy Manifoldssolutions of singularities of appropriately chosen 7-dimensional orbifolds, with the help of asymptotically locally Euclidean spaces. Another method uses the gluing of two asymptotically cylindrical pieces and requires a certain matching condition for their cross-sections ‘a(chǎn)t infinity’.
14#
發(fā)表于 2025-3-24 00:05:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:35:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:59:55 | 只看該作者
18#
發(fā)表于 2025-3-24 17:04:03 | 只看該作者
Distinguished ,-Structures on Solvmanifoldsys between these concepts in the context of left-invariant .-structures on solvable Lie groups. Also, some Ricci pinching properties of .-structures on solvmanifolds are obtained, in terms of the extremal values and points of the functional ., .. Many natural open problems have been included.
19#
發(fā)表于 2025-3-24 22:05:00 | 只看該作者
Flows of Co-closed ,-Structures the original Laplacian coflow of .-structures as well as the modified coflow, reviewing short-time existence and uniqueness results for the modified coflow and well as recent Shi-type estimates that apply to a more general class of .-structure flows.
20#
發(fā)表于 2025-3-25 00:50:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 陕西省| 松阳县| 专栏| 彭阳县| 华坪县| 两当县| 中江县| 盐边县| 平利县| 贞丰县| 名山县| 凤山县| 古丈县| 龙江县| 黄骅市| 四子王旗| 内丘县| 四川省| 金平| 崇阳县| 秦安县| 湘潭县| 灵丘县| 石泉县| 鹿泉市| 临颍县| 平罗县| 晋江市| 重庆市| 乡城县| 平利县| 隆尧县| 沧州市| 保德县| 来安县| 闵行区| 建德市| 长兴县| 长岭县| 峡江县|