找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines; Theory, Algorithms a Jamal Amani Rad,Kourosh Parand,Sneh

[復(fù)制鏈接]
樓主: advocate
41#
發(fā)表于 2025-3-28 16:50:05 | 只看該作者
Fractional Legendre Kernel Functions: Theory and Applicationctions as a kernel. Linear, radial basis functions, and polynomial functions are the most common functions used in this algorithm. Legendre polynomials are among the most widely used orthogonal polynomials that have achieved excellent results in the support vector machine algorithm. In this chapter,
42#
發(fā)表于 2025-3-28 21:17:48 | 只看該作者
Fractional Gegenbauer Kernel Functions: Theory and?Applicationhine learning issues. Gegenbauer polynomials, like the Chebyshev and Legender polynomials which are introduced in previous chapters, are among the most commonly utilized orthogonal polynomials that have produced outstanding results in the support vector machine method. In this chapter, some essentia
43#
發(fā)表于 2025-3-29 02:05:24 | 只看該作者
44#
發(fā)表于 2025-3-29 04:51:10 | 只看該作者
Solving Ordinary Differential Equations by LS-SVMd on the least squares-support vector machines (LS-SVM) with collocation procedure. One of the most important and practical models in this category is Lane-Emden type equations. By using LS-SVM for solving these types of equations, the solution is expanded based on rational Legendre functions and th
45#
發(fā)表于 2025-3-29 10:12:37 | 只看該作者
46#
發(fā)表于 2025-3-29 13:53:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:31:06 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:28 | 只看該作者
49#
發(fā)表于 2025-3-30 02:17:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:00:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新郑市| 石屏县| 平阴县| 高密市| 游戏| 沧源| 东丰县| 大同市| 永昌县| 武威市| 习水县| 山阴县| 丹江口市| 屏南县| 琼结县| 交口县| 柳江县| 贺兰县| 昆山市| 韶山市| 格尔木市| 云阳县| 山西省| 宿州市| 什邡市| 隆回县| 沾益县| 屏东市| 宜昌市| 西畴县| 翼城县| 嘉荫县| 高淳县| 永嘉县| 双牌县| 永川市| 安阳市| 巴中市| 博爱县| 桐城市| 五原县|