找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines; Theory, Algorithms a Jamal Amani Rad,Kourosh Parand,Sneh

[復(fù)制鏈接]
樓主: advocate
31#
發(fā)表于 2025-3-26 23:58:43 | 只看該作者
Fractional Chebyshev Kernel Functions: Theory and Applicationd fractional Chebyshev functions, various Chebyshev kernel functions are presented, and fractional Chebyshev kernel functions are introduced. Finally, the performance of the various Chebyshev kernel functions is illustrated on two sample datasets.
32#
發(fā)表于 2025-3-27 01:46:56 | 只看該作者
Fractional Legendre Kernel Functions: Theory and Application some basic features of Legendre and fractional Legendre functions are introduced and reviewed, and then the kernels of these functions are introduced and validated. Finally, the performance of these functions in solving two problems (two sample datasets) is measured.
33#
發(fā)表于 2025-3-27 05:16:30 | 只看該作者
Fractional Gegenbauer Kernel Functions: Theory and?Applicationl properties of Gegenbauer and fractional Gegenbauer functions are presented and reviewed, followed by the kernels of these functions, which are introduced and validated. Finally, the performance of these functions in addressing two issues (two example datasets) is evaluated.
34#
發(fā)表于 2025-3-27 11:01:27 | 只看該作者
Classification Using Orthogonal Kernel Functions: Tutorial on?ORSVM Packagech effort to implement. To make it easy for anyone who needs to try and use these kernels, a Python package is provided here. In this chapter, the ORSVM package is introduced as an SVM classification package with orthogonal kernel functions.
35#
發(fā)表于 2025-3-27 17:36:44 | 只看該作者
Solving Ordinary Differential Equations by LS-SVM Finally, by presenting some numerical examples, the results of the current method are compared with other methods. The comparison shows that the proposed method is fast and highly accurate with exponential convergence.
36#
發(fā)表于 2025-3-27 18:47:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:25 | 只看該作者
38#
發(fā)表于 2025-3-28 04:12:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:18:19 | 只看該作者
Basics of SVM Method and Least Squares SVM a unique solution and also satisfies the Karush–Kuhn–Tucker conditions, it can be solved very efficiently. In this chapter, the formulation of optimization problems which have arisen in the various forms of support vector machine algorithms is discussed.
40#
發(fā)表于 2025-3-28 12:40:57 | 只看該作者
Fractional Chebyshev Kernel Functions: Theory and Applicationgonal functions is producing powerful kernel functions for the support vector machine algorithm. Maybe the simplest orthogonal function that can be used for producing kernel functions is the Chebyshev polynomials. In this chapter, after reviewing some essential properties of Chebyshev polynomials an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嫩江县| 铁力市| 滦南县| 隆安县| 太白县| 偃师市| 博罗县| 辽阳县| 右玉县| 沾益县| 宿州市| 黔西县| 库伦旗| 浪卡子县| 托克托县| 阿拉尔市| 丽江市| 邢台县| 桐城市| 吉隆县| 南皮县| 修水县| 清水县| 娱乐| 正蓝旗| 凤城市| 含山县| 喀喇沁旗| 黑河市| 巴彦淖尔市| 鞍山市| 利辛县| 神池县| 花莲市| 安丘市| 桦川县| 瑞安市| 奉贤区| 伊金霍洛旗| 比如县| 荥经县|