找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning to Quantify; Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 40085|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:14:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learning to Quantify
編輯Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani
視頻videohttp://file.papertrans.cn/584/583008/583008.mp4
概述Introduces learning to quantify by looking at the supervised learning methods used to perform it.Details evaluation measures and protocols to be used for evaluating the quality of the returned predict
叢書名稱The Information Retrieval Series
圖書封面Titlebook: Learning to Quantify;  Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)
描述.This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates...The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research...The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data sci
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Information Retrieval; Machine Learning; Supervised Learning; Data Mining; Prevalence Estimation; Class P
版次1
doihttps://doi.org/10.1007/978-3-031-20467-8
isbn_softcover978-3-031-20466-1
isbn_ebook978-3-031-20467-8Series ISSN 1871-7500 Series E-ISSN 2730-6836
issn_series 1871-7500
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書目名稱Learning to Quantify影響因子(影響力)




書目名稱Learning to Quantify影響因子(影響力)學(xué)科排名




書目名稱Learning to Quantify網(wǎng)絡(luò)公開度




書目名稱Learning to Quantify網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning to Quantify被引頻次




書目名稱Learning to Quantify被引頻次學(xué)科排名




書目名稱Learning to Quantify年度引用




書目名稱Learning to Quantify年度引用學(xué)科排名




書目名稱Learning to Quantify讀者反饋




書目名稱Learning to Quantify讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:10 | 只看該作者
Learning to Quantify978-3-031-20467-8Series ISSN 1871-7500 Series E-ISSN 2730-6836
板凳
發(fā)表于 2025-3-22 03:36:15 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:34 | 只看該作者
5#
發(fā)表于 2025-3-22 11:59:32 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:55 | 只看該作者
https://doi.org/10.1007/978-3-031-20467-8Information Retrieval; Machine Learning; Supervised Learning; Data Mining; Prevalence Estimation; Class P
7#
發(fā)表于 2025-3-22 19:42:55 | 只看該作者
dictions in the EU’s approach to Central and Eastern European states in the period 2004–2014 and shows how the puzzles that motivated this book arose. Drawing on my practical experience working for the EU in Ukraine and on analysis of the wider political context it highlights connections between ide
8#
發(fā)表于 2025-3-22 22:30:48 | 只看該作者
Andrea Esuli,Alessandro Fabris,Alejandro Moreo,Fabrizio Sebastianidistinction of the borderscape from the wider social world by also connecting it to political questions of identities and orders, drawing on and updating previous work in the ‘IBO tradition’. This chapter also identifies key socio-political, spatial and temporal underpinnings of my research and expl
9#
發(fā)表于 2025-3-23 02:14:22 | 只看該作者
Andrea Esuli,Alessandro Fabris,Alejandro Moreo,Fabrizio Sebastianibelonging, and by drawing upon?social theories that approach the changing nature of the late modernity, and new ways of social participation. The results of our study?indicate that a shared sense of belonging to a community that encourages personal expression in the face of oppression may make socia
10#
發(fā)表于 2025-3-23 07:25:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白沙| 黎川县| 天等县| 卓资县| 会宁县| 陆良县| 衡水市| 无棣县| 陵水| 通辽市| 泰安市| 安塞县| 庆阳市| 中宁县| 沁源县| 肥城市| 太和县| 南漳县| 海口市| 永新县| 广丰县| 准格尔旗| 苗栗县| 合作市| 汝州市| 壶关县| 韶关市| 祁阳县| 汤阴县| 西乌| 柞水县| 平南县| 汪清县| 正蓝旗| 清丰县| 桃园县| 温州市| 开江县| 门源| 开封市| 潜江市|