找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning to Quantify; Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 40137|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:14:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Learning to Quantify
編輯Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani
視頻videohttp://file.papertrans.cn/584/583008/583008.mp4
概述Introduces learning to quantify by looking at the supervised learning methods used to perform it.Details evaluation measures and protocols to be used for evaluating the quality of the returned predict
叢書(shū)名稱(chēng)The Information Retrieval Series
圖書(shū)封面Titlebook: Learning to Quantify;  Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)
描述.This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates...The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research...The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data sci
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Information Retrieval; Machine Learning; Supervised Learning; Data Mining; Prevalence Estimation; Class P
版次1
doihttps://doi.org/10.1007/978-3-031-20467-8
isbn_softcover978-3-031-20466-1
isbn_ebook978-3-031-20467-8Series ISSN 1871-7500 Series E-ISSN 2730-6836
issn_series 1871-7500
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書(shū)目名稱(chēng)Learning to Quantify影響因子(影響力)




書(shū)目名稱(chēng)Learning to Quantify影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Learning to Quantify網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Learning to Quantify網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Learning to Quantify被引頻次




書(shū)目名稱(chēng)Learning to Quantify被引頻次學(xué)科排名




書(shū)目名稱(chēng)Learning to Quantify年度引用




書(shū)目名稱(chēng)Learning to Quantify年度引用學(xué)科排名




書(shū)目名稱(chēng)Learning to Quantify讀者反饋




書(shū)目名稱(chēng)Learning to Quantify讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:10 | 只看該作者
Learning to Quantify978-3-031-20467-8Series ISSN 1871-7500 Series E-ISSN 2730-6836
板凳
發(fā)表于 2025-3-22 03:36:15 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:34 | 只看該作者
5#
發(fā)表于 2025-3-22 11:59:32 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:55 | 只看該作者
https://doi.org/10.1007/978-3-031-20467-8Information Retrieval; Machine Learning; Supervised Learning; Data Mining; Prevalence Estimation; Class P
7#
發(fā)表于 2025-3-22 19:42:55 | 只看該作者
dictions in the EU’s approach to Central and Eastern European states in the period 2004–2014 and shows how the puzzles that motivated this book arose. Drawing on my practical experience working for the EU in Ukraine and on analysis of the wider political context it highlights connections between ide
8#
發(fā)表于 2025-3-22 22:30:48 | 只看該作者
Andrea Esuli,Alessandro Fabris,Alejandro Moreo,Fabrizio Sebastianidistinction of the borderscape from the wider social world by also connecting it to political questions of identities and orders, drawing on and updating previous work in the ‘IBO tradition’. This chapter also identifies key socio-political, spatial and temporal underpinnings of my research and expl
9#
發(fā)表于 2025-3-23 02:14:22 | 只看該作者
Andrea Esuli,Alessandro Fabris,Alejandro Moreo,Fabrizio Sebastianibelonging, and by drawing upon?social theories that approach the changing nature of the late modernity, and new ways of social participation. The results of our study?indicate that a shared sense of belonging to a community that encourages personal expression in the face of oppression may make socia
10#
發(fā)表于 2025-3-23 07:25:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 永平县| 安泽县| 任丘市| 长兴县| 福泉市| 霞浦县| 天峻县| 中超| 民县| 独山县| 浪卡子县| 河池市| 三江| 苏州市| 琼海市| 杭锦旗| 弋阳县| 扶风县| 舟曲县| 临安市| 筠连县| 临潭县| 锡林浩特市| 兴和县| 长沙县| 凤城市| 华蓥市| 广水市| 宝清县| 甘洛县| 毕节市| 拉萨市| 巴彦淖尔市| 孝义市| 巴楚县| 元氏县| 绵竹市| 科尔| 呼伦贝尔市| 毕节市|