找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Learning Theory; 18th Annual Conferen Peter Auer,Ron Meir Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Boosting.Suppo

[復(fù)制鏈接]
樓主: 技巧
51#
發(fā)表于 2025-3-30 10:29:26 | 只看該作者
Stability and Generalization of Bipartite Ranking Algorithmsn bounds for ranking, which are based on uniform convergence and in many cases cannot be applied to these algorithms. A comparison of the bounds we obtain with corresponding bounds for classification algorithms yields some interesting insights into the difference in generalization behaviour between ranking and classification.
52#
發(fā)表于 2025-3-30 13:16:52 | 只看該作者
53#
發(fā)表于 2025-3-30 17:11:30 | 只看該作者
Conference proceedings 2005ning Theory) held in Bertinoro, Italy from June 27 to 30, 2005. The technical program contained 45 papers selected from 120 submissions, 3 open problems selected from among 5 contributed, and 2 invited lectures. The invited lectures were given by Sergiu Hart on “Uncoupled Dynamics and Nash Equilibri
54#
發(fā)表于 2025-3-30 23:32:20 | 只看該作者
A New Perspective on an Old Perceptron Algorithmlgorithm in the inseparable case. We describe a multiclass extension of the algorithm. This extension is used in an experimental evaluation in which we compare the proposed algorithm to the Perceptron algorithm.
55#
發(fā)表于 2025-3-31 03:40:07 | 只看該作者
56#
發(fā)表于 2025-3-31 08:06:23 | 只看該作者
Ranking and Scoring Using Empirical Risk Minimizationking algorithms based on boosting and support vector machines. Just like in binary classification, fast rates of convergence are achieved under certain noise assumption. General sufficient conditions are proposed in several special cases that guarantee fast rates of convergence.
57#
發(fā)表于 2025-3-31 12:35:33 | 只看該作者
Loss Bounds for Online Category Rankingounds for the algorithms by using the properties of the dual solution while imposing additional constraints on the dual form. Finally, we outline and analyze the convergence of a general update that can be employed with any Bregman divergence.
58#
發(fā)表于 2025-3-31 15:30:03 | 只看該作者
The Value of Agreement, a New Boosting Algorithmearners will result in a larger improvement whereas using two copies of a single algorithm gives no advantage at all. As a proof of concept, we apply the algorithm, named AgreementBoost, to a web classification problem where an up to 40% reduction in the number of labeled examples is obtained.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 安龙县| 壶关县| 寿光市| 邹城市| 宜都市| 拜城县| 沁阳市| 武鸣县| 河北省| 承德县| 忻州市| 高碑店市| 同江市| 梁山县| 澳门| 陆良县| 靖边县| 六枝特区| 灌阳县| 永和县| 台湾省| 英吉沙县| 永年县| 安多县| 安溪县| 玉树县| 团风县| 定兴县| 马鞍山市| 元朗区| 黄石市| 同仁县| 报价| 库伦旗| 密云县| 新昌县| 阳谷县| 新邵县| 铜鼓县| 当阳市|