找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Theory; 18th Annual Conferen Peter Auer,Ron Meir Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Boosting.Suppo

[復(fù)制鏈接]
樓主: 技巧
41#
發(fā)表于 2025-3-28 17:50:05 | 只看該作者
978-3-540-26556-6Springer-Verlag Berlin Heidelberg 2005
42#
發(fā)表于 2025-3-28 21:05:43 | 只看該作者
Learning Theory978-3-540-31892-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
43#
發(fā)表于 2025-3-29 01:17:54 | 只看該作者
On the Consistency of Multiclass Classification Methodsproperty of Bayes consistency. We provide a necessary and sufficient condition for consistency which applies to a large class of multiclass classification methods. The approach is illustrated by applying it to some multiclass methods proposed in the literature.
44#
發(fā)表于 2025-3-29 05:56:57 | 只看該作者
Data Dependent Concentration Bounds for Sequential Prediction Algorithmsg some newly developed probability inequalities, we are able to bound the total generalization performance of a learning algorithm in terms of its observed total loss. Consequences of this analysis will be illustrated with examples.
45#
發(fā)表于 2025-3-29 07:17:36 | 只看該作者
The Weak Aggregating Algorithm and Weak Mixabilityrom a finite alphabet. For the bounded games the paper introduces the Weak Aggregating Algorithm that allows us to obtain additive terms of the form .. A modification of the Weak Aggregating Algorithm that covers unbounded games is also described.
46#
發(fā)表于 2025-3-29 14:06:55 | 只看該作者
Tracking the Best of Many Experts provided that the set of experts has a certain structure allowing efficient implementations of the exponentially weighted average predictor. As an example we work out the case where each expert is represented by a path in a directed graph and the loss of each expert is the sum of the weights over the edges in the path.
47#
發(fā)表于 2025-3-29 17:57:51 | 只看該作者
https://doi.org/10.1007/b137542Boosting; Support Vector Machine; classification; game theory; learning; learning theory; supervised learn
48#
發(fā)表于 2025-3-29 23:30:53 | 只看該作者
Martingale BoostingMartingale boosting is a simple and easily understood technique with a simple and easily understood analysis. A slight variant of the approach provably achieves optimal accuracy in the presence of random misclassification noise.
49#
發(fā)表于 2025-3-30 01:14:18 | 只看該作者
Sensitive Error Correcting Output CodesWe present a reduction from cost-sensitive classification to binary classification based on (a modification of) error correcting output codes. The reduction satisfies the property that . regret for binary classification implies ..-regret of at most 2. for cost estimation. This has several implications:
50#
發(fā)表于 2025-3-30 08:00:34 | 只看該作者
Margin-Based Ranking Meets Boosting in the MiddleUC and achieves the same AUC as RankBoost. This explains the empirical observations made by Cortes and Mohri, and Caruana and Niculescu-Mizil, about the excellent performance of AdaBoost as a ranking algorithm, as measured by the AUC.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广宗县| 弋阳县| 定西市| 柳林县| 沙坪坝区| 东阿县| 左权县| 永嘉县| 汕头市| 鹤庆县| 安福县| 绩溪县| 铅山县| 根河市| 寻甸| 南皮县| 兰西县| 互助| 双桥区| 招远市| 竹山县| 敦化市| 天祝| 西平县| 济阳县| 南川市| 类乌齐县| 滨海县| 华蓥市| 正定县| 饶平县| 成安县| 根河市| 赣榆县| 新乡县| 凤阳县| 玉林市| 焦作市| 芜湖县| 巨野县| 灵璧县|