找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Laws of Small Numbers: Extremes and Rare Events; Michael Falk,Jürg Hüsler,Rolf-Dieter Reiss Book 2011Latest edition Springer Basel AG 2011

[復制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 10:45:18 | 只看該作者
Michael Falk,Jürg Hüsler,Rolf-Dieter Reissdicate B belongs to the subject A as something contained (though covertly) in the concept A; or B lies outside the sphere of the concept A, though somehow connected with it. In the former case I call the judgement analytical, in the latter synthetical. Analytical judgements (affirmative) are therefo
12#
發(fā)表于 2025-3-23 14:38:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:35 | 只看該作者
Michael Falk,Jürg Hüsler,Rolf-Dieter Reissl institutions can produce quite dramatic changes in the behaviour of the states and nonstate actors that they seek to influence. Taken as a whole, that body of research has also demonstrated several other important points. First, it has shown that determining whether observed changes in behaviour w
14#
發(fā)表于 2025-3-23 22:56:27 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:11:22 | 只看該作者
17#
發(fā)表于 2025-3-24 13:43:07 | 只看該作者
18#
發(fā)表于 2025-3-24 15:49:21 | 只看該作者
Multivariate Generalized Pareto Distributionsing of multivariate exceedances, see Section 5.1. Various results around the multivariate peaks-over-threshold approach are compiled in Section 5.2. The peaks-overthreshold stability of a multivariate GPD is investigated in Section 5.3.
19#
發(fā)表于 2025-3-24 23:04:09 | 只看該作者
The Pickands Approach in the Bivariate Caseng function ., see Section 6.1, and prove that the pertaining Pickands dependence function .is absolutely continuous, see Lemma 6.2.1 and the subsequent discussion. This property is unknown in higher dimensions.
20#
發(fā)表于 2025-3-25 02:14:46 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 21:39
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
河曲县| 长岛县| 治县。| 呼玛县| 巫溪县| 洪泽县| 泾阳县| 富平县| 阿鲁科尔沁旗| 凯里市| 金阳县| 叙永县| 贵溪市| 巨鹿县| 皋兰县| 桂林市| 长海县| 边坝县| 荆门市| 浏阳市| 龙泉市| 慈溪市| 杨浦区| 新疆| 安远县| 天祝| 林口县| 华池县| 濉溪县| 拉萨市| 鄂托克前旗| 军事| 聊城市| 临泉县| 定结县| 年辖:市辖区| 云龙县| 中阳县| 左权县| 扬中市| 连江县|