找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
41#
發(fā)表于 2025-3-28 14:44:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:05:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:21:56 | 只看該作者
Socle. Torsion lattices,Let . be a lattice with zero.
44#
發(fā)表于 2025-3-29 04:02:22 | 只看該作者
Independence. Semiatomic lattices,A subset {..}. of non-zero elements of a complete lattice . (with 0) is called . if for every . the equality . holds. In this case we use the notation . and we call this join a ..
45#
發(fā)表于 2025-3-29 08:14:33 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:15 | 只看該作者
Lattices of finite uniform dimension,An element . is called . (or . [33]) if for every . the following implication holds: 0 < . ≤ ., 0 < . ≤ . ? . ≠ 0 (i.e., all non-zero elements from ./0 are essential in ./0).
47#
發(fā)表于 2025-3-29 18:42:04 | 只看該作者
48#
發(fā)表于 2025-3-29 23:07:25 | 只看該作者
Coatomic lattices,The interest in coatomic lattices goes back to H. Bass [2] (in 1960) who defined B-objects, i.e., modules . such that every submodule . is contained in a maximal submodule.
49#
發(fā)表于 2025-3-30 03:43:07 | 只看該作者
,Co—compact lattices,A complete lattice . is called . (or . in [34]) if for every subset . of . such that Λ . = 0 there is a finite subset . of . such that Λ . 0. Obviously, . is co—compact if and only if the dual L° is compact. An element a ∈ . is called . if the sublattice ./0 is co—compact.
50#
發(fā)表于 2025-3-30 04:22:26 | 只看該作者
Supplemented lattices. Locally artinian lattices,For the beginning we mention (a straightforward lattice version of [41]) some simple results about supplements and supplemented lattices.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新河县| 临泽县| 石家庄市| 南宫市| 玉溪市| 元江| 城步| 汶川县| 通州区| 贡山| 康乐县| 泸水县| 贵定县| 平远县| 莱西市| 登封市| 南陵县| 禄劝| 上虞市| 承德市| 潼关县| 启东市| 弥渡县| 凤阳县| 梅州市| 吉木乃县| 奇台县| 阿拉尔市| 曲沃县| 太谷县| 山东省| 台湾省| 社会| 平和县| 隆回县| 鄄城县| 禹城市| 宿州市| 左权县| 册亨县| 增城市|