找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
31#
發(fā)表于 2025-3-27 01:02:56 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:37 | 只看該作者
Grigore C?lug?reanuechniques in the way of their simplicity of use, and rapid and real-time display of whole-field phase maps accompanied by fast quantitative evaluation of these contours. Given these powerful attributes, we can confidently expect holographicand speckle techniques to not only continue to grow and deve
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:56:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:28:31 | 只看該作者
Lattice Concepts of Module Theory978-94-015-9588-9Series ISSN 0927-4529
37#
發(fā)表于 2025-3-27 23:23:34 | 只看該作者
Texts in the Mathematical Scienceshttp://image.papertrans.cn/l/image/581930.jpg
38#
發(fā)表于 2025-3-28 03:41:16 | 只看該作者
https://doi.org/10.1007/978-94-015-9588-9Group theory; Lattice; algebra; torsion
39#
發(fā)表于 2025-3-28 06:51:24 | 只看該作者
Basic notions and results,.. A system (.., .., ..., ..; .) with .. 1 ≤ . ≤ . arbitrary sets and . ? .. × .. × ... × .. is called an . between the elements of these sets. If .. = .. = ... = .. = . the relation (., ., ..., .; .) is called . and if . = 2 it is called binary.
40#
發(fā)表于 2025-3-28 11:33:37 | 只看該作者
Compactly generated lattices,. (Nachbin, Stenstr?m) An element . of a complete lattice . is called . if for every subset . of . and . ≤ ∨ . there is a finite subset . ? . such that . ≤ ∨ . and . if for each upper directed subset . ? . and . ≤ ∨ . there is an element .. ? . such that . ≤ ...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚宁县| 甘泉县| 昆山市| 武汉市| 崇明县| 定结县| 侯马市| 怀仁县| 原阳县| 微山县| 广河县| 金寨县| 青冈县| 塘沽区| 永川市| 信宜市| 霍山县| 潞城市| 台南市| 弥勒县| 屏边| 宝鸡市| 茌平县| 高邮市| 新和县| 新丰县| 苗栗县| 姜堰市| 三亚市| 普洱| 长子县| 泰州市| 依安县| 湘潭县| 达日县| 徐水县| 新巴尔虎左旗| 怀仁县| 铜川市| 太保市| 天祝|