找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale and Distributed Optimization; Pontus Giselsson,Anders Rantzer Book 2018 Springer Nature Switzerland AG 2018 Large-Scale Optimi

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-27 00:18:56 | 只看該作者
32#
發(fā)表于 2025-3-27 03:06:16 | 只看該作者
t by a "many-to-one or one-to- many application between contextually defined perceptual objects within contexts that are mutually incompatible but complementary. " This should not, however, be 978-90-481-5926-0978-94-017-1767-0Series ISSN 0068-0346 Series E-ISSN 2214-7942
33#
發(fā)表于 2025-3-27 08:34:56 | 只看該作者
34#
發(fā)表于 2025-3-27 11:35:31 | 只看該作者
Decentralized Consensus Optimization and Resource Allocation,r solving the decentralized consensus optimization problem and, based on the “mirror relationship”, we then develop some algorithms for solving the decentralized resource allocation problem. We also provide some numerical experiments to demonstrate the efficacy of the algorithms and validate the methodology of using the “mirror relation”.
35#
發(fā)表于 2025-3-27 14:09:17 | 只看該作者
0075-8434 for large-scale optimization.Offers a valuable source of inThis book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade
36#
發(fā)表于 2025-3-27 20:15:52 | 只看該作者
Exploiting Chordality in Optimization Algorithms for Model Predictive Control,point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.
37#
發(fā)表于 2025-3-28 00:35:31 | 只看該作者
Smoothing Alternating Direction Methods for Fully Nonsmooth Constrained Convex Optimization,to update all the algorithmic parameters automatically with clear impact on the convergence performance. We also provide a representative numerical example showing the advantages of our methods over the classical alternating direction methods using a well-known feasibility problem.
38#
發(fā)表于 2025-3-28 04:37:30 | 只看該作者
39#
發(fā)表于 2025-3-28 08:36:31 | 只看該作者
Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints, also construct Mirror Descent for problems with objective function, which is not Lipschitz, e.g., is a quadratic function. Besides that, we address the question of recovering the dual solution in the considered problem.
40#
發(fā)表于 2025-3-28 10:54:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 郸城县| 许昌市| 崇左市| 长宁区| 沂源县| 衡水市| 瑞金市| 中方县| 甘泉县| 南宁市| 峡江县| 和田县| 泸定县| 长阳| 安丘市| 永济市| 洪湖市| 晴隆县| 湘阴县| 于田县| 大姚县| 平陆县| 前郭尔| 永寿县| 丘北县| 南郑县| 若羌县| 涟水县| 齐河县| 平潭县| 海南省| 四会市| 聊城市| 西乌珠穆沁旗| 永年县| 甘南县| 颍上县| 桑植县| 克山县| 九龙县|