找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale and Distributed Optimization; Pontus Giselsson,Anders Rantzer Book 2018 Springer Nature Switzerland AG 2018 Large-Scale Optimi

[復制鏈接]
樓主: 復雜
11#
發(fā)表于 2025-3-23 11:50:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:32:22 | 只看該作者
Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework, and two nonsmooth proximable functions, one of which is composed with a linear mapping. The framework is based on the recently proposed asymmetric forward-backward-adjoint three-term splitting (AFBA); depending on the value of two parameters, (extensions of) known algorithms as well as many new pri
13#
發(fā)表于 2025-3-23 19:49:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:21:31 | 只看該作者
Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints,hods to solve such problems in different situations: smooth or non-smooth objective function; convex or strongly convex objective and constraint; deterministic or randomized information about the objective and constraint. Described methods are based on Mirror Descent algorithm and switching subgradi
16#
發(fā)表于 2025-3-24 08:20:40 | 只看該作者
Frank-Wolfe Style Algorithms for Large Scale Optimization,rithm using stochastic gradients, approximate subproblem solutions, and sketched decision variables in order to scale to enormous problems while preserving (up to constants) the optimal convergence rate ..
17#
發(fā)表于 2025-3-24 13:27:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:46:14 | 只看該作者
Communication-Efficient Distributed Optimization of Self-concordant Empirical Loss,ization in machine learning. We assume that each machine in the distributed computing system has access to a local empirical loss function, constructed with i.i.d. data sampled from a common distribution. We propose a communication-efficient distributed algorithm to minimize the overall empirical lo
19#
發(fā)表于 2025-3-24 19:47:01 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:07 | 只看該作者
Convergence of an Inexact Majorization-Minimization Method for Solving a Class of Composite Optimizy constructed . of the objective function. We describe a variety of classes of functions for which such a construction is possible. We introduce an inexact variant of the method, in which only approximate minimization of the consistent majorizer is performed at each iteration. Both the exact and the
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
莒南县| 锦州市| 邢台市| 喀喇| 九台市| 昌图县| 中宁县| 泌阳县| 盖州市| 九江市| 克东县| 盈江县| 章丘市| 广元市| 游戏| 吉林省| 龙泉市| 江门市| 德钦县| 双桥区| 新竹市| 昌江| 台北县| 会东县| 南投县| 古浪县| 沙田区| 陵川县| 磐安县| 铁岭市| 汉中市| 互助| 尼木县| 柳江县| 冷水江市| 嘉祥县| 岳普湖县| 子长县| 嘉兴市| 乐至县| 辽宁省|