找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale Scientific Computing; 13th International C Ivan Lirkov,Svetozar Margenov Conference proceedings 2022 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: Colossal
11#
發(fā)表于 2025-3-23 09:58:21 | 只看該作者
First-Order Reaction-Diffusion System with?Space-Fractional Diffusion in?an?Unbounded Mediumtem can be solved in terms of the Hankel transform involving Bessel functions. Methods for numerical evaluation of the resulting integrals are implemented. It is demonstrated that the convergence of the Bessel integrals could be accelerated using standard techniques for sequence acceleration.
12#
發(fā)表于 2025-3-23 15:43:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:00:08 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:41 | 只看該作者
15#
發(fā)表于 2025-3-24 02:56:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:45 | 只看該作者
A Newton’s Method for Best Uniform Polynomial Approximationon a formulation of the problem as a nonlinear system of equations and barycentric interpolation. We use results on derivatives of interpolating polynomials with respect to interpolation nodes to compute the Jacobian matrix. The resulting method is fast and stable, can deal with singularities and ex
18#
發(fā)表于 2025-3-24 18:55:43 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:18 | 只看該作者
First-Order Reaction-Diffusion System with?Space-Fractional Diffusion in?an?Unbounded Mediumactional diffusion. The paper considers a simple case of a reaction-diffusion system with two spatial compartments – a proximal one of finite width having a source; and a distal one, which is extended to infinity and where the source is not present but there is a first order decay of the diffusing s
20#
發(fā)表于 2025-3-25 00:07:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 阿坝县| 凤冈县| 钟山县| 乐东| 恩施市| 康乐县| 临安市| 时尚| 任丘市| 河源市| 安阳县| 昌吉市| 那曲县| 田东县| 宁晋县| 棋牌| 蓬安县| 哈巴河县| 申扎县| 阿巴嘎旗| 迁安市| 柘城县| 富阳市| 同仁县| 吉首市| 邛崃市| 成安县| 宁远县| 林芝县| 黑山县| 新丰县| 潞西市| 库车县| 平湖市| 钟祥市| 济源市| 武陟县| 巴里| 安岳县| 得荣县|