找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale Scientific Computing; 13th International C Ivan Lirkov,Svetozar Margenov Conference proceedings 2022 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: Colossal
11#
發(fā)表于 2025-3-23 09:58:21 | 只看該作者
First-Order Reaction-Diffusion System with?Space-Fractional Diffusion in?an?Unbounded Mediumtem can be solved in terms of the Hankel transform involving Bessel functions. Methods for numerical evaluation of the resulting integrals are implemented. It is demonstrated that the convergence of the Bessel integrals could be accelerated using standard techniques for sequence acceleration.
12#
發(fā)表于 2025-3-23 15:43:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:00:08 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:41 | 只看該作者
15#
發(fā)表于 2025-3-24 02:56:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:45 | 只看該作者
A Newton’s Method for Best Uniform Polynomial Approximationon a formulation of the problem as a nonlinear system of equations and barycentric interpolation. We use results on derivatives of interpolating polynomials with respect to interpolation nodes to compute the Jacobian matrix. The resulting method is fast and stable, can deal with singularities and ex
18#
發(fā)表于 2025-3-24 18:55:43 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:18 | 只看該作者
First-Order Reaction-Diffusion System with?Space-Fractional Diffusion in?an?Unbounded Mediumactional diffusion. The paper considers a simple case of a reaction-diffusion system with two spatial compartments – a proximal one of finite width having a source; and a distal one, which is extended to infinity and where the source is not present but there is a first order decay of the diffusing s
20#
發(fā)表于 2025-3-25 00:07:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沂市| 灌云县| 天全县| 鄂伦春自治旗| 拜泉县| 长岭县| 巴林左旗| 兴和县| 榆中县| 保靖县| 惠州市| 青浦区| 西吉县| 西贡区| 揭阳市| 油尖旺区| 常山县| 富川| 社旗县| 太保市| 阳谷县| 邻水| 木里| 遂昌县| 吉隆县| 清原| 大城县| 平原县| 樟树市| 华池县| 凤台县| 黎平县| 阿克| 南郑县| 玛沁县| 峨边| 宝坻区| 新巴尔虎右旗| 长治市| 霍林郭勒市| 乐安县|