找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics; G. A. Arteca,F. M. Fernández,E. A. Castro Book 1990 Springer-V

[復(fù)制鏈接]
樓主: 兇惡的老婦
61#
發(fā)表于 2025-4-1 05:06:29 | 只看該作者
Application of the VFM to the Zeeman Effect in Hydrogenescribing this system in the non-relativistic approximation, and with suitable units (Appendix H), is:. Wherer . Let E (Z, λ) denote the set of eigenvalues of that portion of H excluding the paramagnetic field terms (Eq. (31.1)), i.e.: . The importance of this problem was already widely discussed in
62#
發(fā)表于 2025-4-1 06:19:13 | 只看該作者
Geometrical Connection Between the VFM and the JWKB Methodcal relationships, and the Heisenberg inequalities or the de Broglie hypothesis. It has been shown that all these approximations lead to eigenvalues depending on quantum numbers and parameters contained within the Hamiltonian, similarly to those obtained via the JWKB method and the variational theor
63#
發(fā)表于 2025-4-1 10:42:07 | 只看該作者
Generalization of the Functional Method as a Summation Technique of Perturbation Seriesre devoted to show the use of the VFM as a systematic way to construct expressions for eigenvalues associated with some quantum mechanical systems.Such formulas provide a working scheme, suitable to introduce the information brought forth by PT. The remaining of this book will consider the generaliz
64#
發(fā)表于 2025-4-1 16:50:41 | 只看該作者
65#
發(fā)表于 2025-4-1 21:47:16 | 只看該作者
66#
發(fā)表于 2025-4-1 23:01:57 | 只看該作者
67#
發(fā)表于 2025-4-2 06:37:03 | 只看該作者
Application of the FM to Models with Confining Potentialsof the model, since this question is beyond the scope of this book. However, the interested reader may resort to Appendix F for additional details about the importance and usefulness of the confining models in elementary particle physics.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳县| 罗江县| 平江县| 涟源市| 呈贡县| 嘉祥县| 广州市| 施甸县| 霍林郭勒市| 贵州省| 枝江市| 湟源县| 那曲县| 板桥市| 五台县| 都安| 溆浦县| 崇明县| 南宫市| 苏尼特右旗| 武平县| 黑龙江省| 洪江市| 莆田市| 宜良县| 宣城市| 科技| 屯门区| 汝阳县| 平陆县| 固镇县| 浮梁县| 武宁县| 平昌县| 涟水县| 如皋市| 巨野县| 土默特左旗| 尉犁县| 德钦县| 亚东县|