找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics; G. A. Arteca,F. M. Fernández,E. A. Castro Book 1990 Springer-V

[復(fù)制鏈接]
樓主: 兇惡的老婦
21#
發(fā)表于 2025-3-25 07:18:46 | 只看該作者
22#
發(fā)表于 2025-3-25 09:15:15 | 只看該作者
Lecture Notes in Chemistryhttp://image.papertrans.cn/l/image/581344.jpg
23#
發(fā)表于 2025-3-25 15:19:01 | 只看該作者
24#
發(fā)表于 2025-3-25 17:38:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:05:44 | 只看該作者
The Semiclassical Approximation and the JWKB Methodmethods to obtain eigenfunctions, eigenvalues and expectation values of observables. The semiclassical methods make up a very valuable tool to get such information and their origin can be traced back to the birth of Quantum Mechanics. A renew interest has arisen during the last 20 years and today they have a remarkable relevance and currentness.
26#
發(fā)表于 2025-3-26 03:14:57 | 只看該作者
Geometrical Connection Between the VFM and the JWKB Methodcal relationships, and the Heisenberg inequalities or the de Broglie hypothesis. It has been shown that all these approximations lead to eigenvalues depending on quantum numbers and parameters contained within the Hamiltonian, similarly to those obtained via the JWKB method and the variational theorem /1–13/ (see Chapter VI).
27#
發(fā)表于 2025-3-26 05:43:41 | 只看該作者
28#
發(fā)表于 2025-3-26 09:55:59 | 只看該作者
Rayleigh-Schrodinger Perturbation Theory (RSPT)We devote this Section to present RSPT in a way appropriate to our specific needs. There are several alternative manners to introduce this formalism which can be found in the standard literature /1–3/.
29#
發(fā)表于 2025-3-26 14:33:51 | 只看該作者
Divergence of the Perturbation SeriesThe RSPT (Chapter III) allows one to get an approximation to the eigenvalues (E.) of a given Hamiltonian operator through a series in powers of a real parameter λ. However, the usefulness of the power series is conditioned by a fundamental question: its convergence.
30#
發(fā)表于 2025-3-26 18:52:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金平| 永泰县| 南汇区| 壶关县| 西林县| 湘潭县| 平南县| 崇州市| 长泰县| 竹溪县| 于田县| 顺义区| 衡山县| 元朗区| 离岛区| 琼结县| 新兴县| 许昌市| 龙游县| 大庆市| 子洲县| 河南省| 东阳市| 汉川市| 锦州市| 冕宁县| 天等县| 临潭县| 内黄县| 新巴尔虎右旗| 沐川县| 建湖县| 喜德县| 运城市| 高台县| 吕梁市| 安福县| 牟定县| 鄂尔多斯市| 七台河市| 红安县|