找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Language and Illumination; Studies in the Histo S. Morris Engel Book 1969 Springer Netherlands 1969 Friedrich Nietzsche.Immanuel Kant.John

[復制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 21:44:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:34 | 只看該作者
On the “Composition” of the Critique: A Brief Commente subject in his writings. Of the former the two most important items are his letters to Mendelssohn (dated August 16th, 1783) and Garve (dated August 7th, 1783); of the latter the most significant item is the account he gives of its composition in the Preface to the First Edition (A xviii). But des
33#
發(fā)表于 2025-3-27 05:36:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:28:43 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 17:02:01 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:31:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:54:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:52 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
39#
發(fā)表于 2025-3-28 08:21:53 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
40#
發(fā)表于 2025-3-28 13:06:23 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
左贡县| 察雅县| 凤台县| 延吉市| 繁昌县| 轮台县| 汉沽区| 山东省| 蓝田县| 临安市| 南昌市| 宣城市| 九江市| 长垣县| 彭山县| 宁陕县| 永川市| 疏勒县| 喀喇沁旗| 文昌市| 蕲春县| 五河县| 孝昌县| 海盐县| 秦皇岛市| 青海省| 汶上县| 迭部县| 武安市| 松潘县| 芦溪县| 璧山县| 贵南县| 望都县| 余干县| 苍梧县| 儋州市| 中牟县| 南漳县| 蕲春县| 瑞安市|