找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Landscapes of Time-Frequency Analysis; ATFA 2019 Paolo Boggiatto,Tommaso Bruno,Maria Vallarino Book 2020 Springer Nature Switzerland AG 202

[復制鏈接]
樓主: 日月等
31#
發(fā)表于 2025-3-26 21:14:13 | 只看該作者
The Shearlet Transform and Lizorkin Spaces,ents. We define the dual shearlet transform, called here the shearlet synthesis operator, and we prove its continuity on the space of smooth and rapidly decreasing functions over .. Then, we use these continuity results to extend the shearlet transform to the space of Lizorkin distributions via the
32#
發(fā)表于 2025-3-27 03:44:02 | 只看該作者
,Time–Frequency Localization Operators: State of the Art,about boundedness and Schatten-von Neumann class are reported. Asymptotic eigenvalues’ distribution and decay and smoothness properties for ..-eigenfunctions are exhibited. Eventually, we make a conjecture about smoothness of ..-eigenfunctions for localization operators with Gelfand–Shilov windows a
33#
發(fā)表于 2025-3-27 06:57:29 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:26 | 只看該作者
Some Notes About Distribution Frame Multipliers,y of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
35#
發(fā)表于 2025-3-27 15:20:19 | 只看該作者
Generalized Anti-Wick Quantum States,ion is to define and study a subclass of density operators on ., which we call Toeplitz density operators. They correspond to quantum states obtained from a fixed function (“window”) by position-momentum translations, and reduce in the simplest case to the anti-Wick operators considered long ago by
36#
發(fā)表于 2025-3-27 18:55:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:08 | 只看該作者
Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature,y and in vivo using well-established techniques of fundus photography. Since the treatment of these diseases can be significantly improved with early detection, methods for the quantitative analysis of fundus imaging have been the subject of extensive studies. Following major advances in image proce
38#
發(fā)表于 2025-3-28 05:51:32 | 只看該作者
,A Time–Frequency Analysis Perspective on Feynman Path Integrals,ing the mathematical theory of Feynman path integrals. We hope to draw the interest of mathematicians working in time–frequency analysis on this topic, as well as to illustrate the benefits of this fruitful interplay for people working on path integrals.
39#
發(fā)表于 2025-3-28 08:41:04 | 只看該作者
ispiele aufgezeigt, wie Unternehmen ihre strategische Ausrichtung in der Beschaffung und im Umgang mit den Mitarbeitern der Zukunft gestalten k?nnen. Um die Strategien und Ziele im Personalmanagement systematisch überprüfen und weiterentwickeln zu k?nnen, wurde innerhalb der Deutsche Bank AG und der
40#
發(fā)表于 2025-3-28 11:01:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梅州市| 左云县| 十堰市| 武汉市| 工布江达县| 临西县| 麻阳| 岢岚县| 留坝县| 六枝特区| 赣榆县| 融水| 新干县| 九寨沟县| 织金县| 札达县| 收藏| 海安县| 江永县| 玉林市| 康定县| 格尔木市| 西畴县| 贡嘎县| 铜川市| 宁城县| 邵武市| 蓬莱市| 临朐县| 金秀| 惠来县| 宁波市| 阜平县| 马关县| 蛟河市| 璧山县| 抚顺县| 汕头市| 青阳县| 花莲县| 汕尾市|