找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Landscapes of Time-Frequency Analysis; ATFA 2019 Paolo Boggiatto,Tommaso Bruno,Maria Vallarino Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: 日月等
21#
發(fā)表于 2025-3-25 04:29:45 | 只看該作者
Applied and Numerical Harmonic Analysishttp://image.papertrans.cn/l/image/580775.jpg
22#
發(fā)表于 2025-3-25 08:24:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:12:13 | 只看該作者
Landscapes of Time-Frequency Analysis978-3-030-56005-8Series ISSN 2296-5009 Series E-ISSN 2296-5017
24#
發(fā)表于 2025-3-25 18:00:53 | 只看該作者
,Time–Frequency Localization Operators: State of the Art,about boundedness and Schatten-von Neumann class are reported. Asymptotic eigenvalues’ distribution and decay and smoothness properties for ..-eigenfunctions are exhibited. Eventually, we make a conjecture about smoothness of ..-eigenfunctions for localization operators with Gelfand–Shilov windows and symbols in ultra-modulation spaces.
25#
發(fā)表于 2025-3-25 23:42:32 | 只看該作者
Some Notes About Distribution Frame Multipliers,y of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
26#
發(fā)表于 2025-3-26 00:22:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:00 | 只看該作者
,A Time–Frequency Analysis Perspective on Feynman Path Integrals,ing the mathematical theory of Feynman path integrals. We hope to draw the interest of mathematicians working in time–frequency analysis on this topic, as well as to illustrate the benefits of this fruitful interplay for people working on path integrals.
28#
發(fā)表于 2025-3-26 10:34:58 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:03 | 只看該作者
Radon Transform: Dual Pairs and Irreducible Representations,s theory of dual .-homogeneous pairs (., .) and which allows us to prove intertwining properties and inversion formulae of many existing Radon transforms. Here we analyze in detail one of the important aspects in the theory of dual pairs, namely the injectivity of the map label-to-manifold . and we
30#
發(fā)表于 2025-3-26 19:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌苏市| 合阳县| 隆尧县| 湖州市| 霍邱县| 都江堰市| 南木林县| 长宁县| 余干县| 阳朔县| 南充市| 渝北区| 长顺县| 荥阳市| 安新县| 营山县| 扬中市| 原平市| 宣汉县| 镇平县| 余姚市| 西乡县| 滨州市| 石林| 红河县| 淮安市| 自贡市| 迁西县| 麻城市| 黔东| 靖安县| 眉山市| 本溪| 饶河县| 房山区| 绥棱县| 辽宁省| 绥中县| 金华市| 韶关市| 西盟|