找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Land Cover Classification of Remotely Sensed Images; A Textural Approach S. Jenicka Book 2021 The Editor(s) (if applicable) and The Author(

[復制鏈接]
查看: 42725|回復: 43
樓主
發(fā)表于 2025-3-21 20:06:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Land Cover Classification of Remotely Sensed Images
副標題A Textural Approach
編輯S. Jenicka
視頻videohttp://file.papertrans.cn/581/580545/580545.mp4
概述The book helps the reader in implementing the concepts through the Matlab source codes listed.The book is immensely useful for Computer Science and Civil Engineering undergraduates as well post-gradua
圖書封面Titlebook: Land Cover Classification of Remotely Sensed Images; A Textural Approach S. Jenicka Book 2021 The Editor(s) (if applicable) and The Author(
描述.The book introduces two domains namely Remote Sensing and Digital Image Processing. It discusses remote sensing, texture, classifiers, and procedures for performing the texture-based segmentation and land cover classification.??.The first chapter discusses the important terminologies in remote sensing, basics of land cover classification, types of remotely sensed images and their characteristics. The second chapter introduces the texture and? a detailed literature survey citing papers related to texture analysis and image processing. The third chapter describes basic texture models for gray level images and multivariate texture models for color or remotely sensed images with relevant Matlab source codes. The fourth chapter focuses on texture-based classification and texture-based segmentation. The Matlab source codes for performing supervised texture based segmentation using basic texture models and minimum distance classifier are listed. The fifth chapter describes supervised and unsupervised classifiers. The experimental results obtained using a basic texture model (Uniform Local Binary Pattern) with the classifiers described earlier are discussed through the relevant Matlab sou
出版日期Book 2021
關鍵詞Image Processing; Texture Analysis; Remotely Sensed Images; Texture Models; Segmentation; remote sensing/
版次1
doihttps://doi.org/10.1007/978-3-030-66595-1
isbn_softcover978-3-030-66597-5
isbn_ebook978-3-030-66595-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Land Cover Classification of Remotely Sensed Images影響因子(影響力)




書目名稱Land Cover Classification of Remotely Sensed Images影響因子(影響力)學科排名




書目名稱Land Cover Classification of Remotely Sensed Images網(wǎng)絡公開度




書目名稱Land Cover Classification of Remotely Sensed Images網(wǎng)絡公開度學科排名




書目名稱Land Cover Classification of Remotely Sensed Images被引頻次




書目名稱Land Cover Classification of Remotely Sensed Images被引頻次學科排名




書目名稱Land Cover Classification of Remotely Sensed Images年度引用




書目名稱Land Cover Classification of Remotely Sensed Images年度引用學科排名




書目名稱Land Cover Classification of Remotely Sensed Images讀者反饋




書目名稱Land Cover Classification of Remotely Sensed Images讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:23:52 | 只看該作者
S. JenickaThe book helps the reader in implementing the concepts through the Matlab source codes listed.The book is immensely useful for Computer Science and Civil Engineering undergraduates as well post-gradua
板凳
發(fā)表于 2025-3-22 02:25:21 | 只看該作者
http://image.papertrans.cn/l/image/580545.jpg
地板
發(fā)表于 2025-3-22 04:37:38 | 只看該作者
5#
發(fā)表于 2025-3-22 12:35:07 | 只看該作者
https://doi.org/10.1007/978-3-030-66595-1Image Processing; Texture Analysis; Remotely Sensed Images; Texture Models; Segmentation; remote sensing/
6#
發(fā)表于 2025-3-22 14:14:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:20 | 只看該作者
Supervised Texture-Based Segmentation Using Basic Texture Models,ntation of a gray scale image using a basic texture model (like gray level co-occurrence matrix (GLCM), uniform local binary pattern (ULBP), wavelet and Gabor wavelet-based texture representation) and k-NN classifier. A listing of the relevant Matlab source codes is given in the chapter ..
8#
發(fā)表于 2025-3-23 00:11:24 | 只看該作者
Overview of Spatial Data Analysis and Other Land Cover Classification Methods,cussed. Furthermore this chapter describes generic remotely sensed image analysis approaches and land cover classification methods like per pixel-based, per field-based, sub-pixel-based, and super pixel-based methods.
9#
發(fā)表于 2025-3-23 03:30:55 | 只看該作者
10#
發(fā)表于 2025-3-23 09:22:57 | 只看該作者
ithout an official document that provides clear directions to all institutional levels, there are initiatives that impact on best practices within the University and end up reflecting positively in society. From this work, other institutions can benefit from the initiatives and have the awareness th
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜川县| 淮北市| 汕尾市| 大埔区| 安塞县| 南岸区| 九台市| 鹰潭市| 贺州市| 大方县| 日土县| 平定县| 崇礼县| 神池县| 澳门| 武鸣县| 黎川县| 南安市| 本溪市| 喀什市| 枣庄市| 武清区| 色达县| 根河市| 龙陵县| 武平县| 双江| 东方市| 远安县| 鹿泉市| 盐城市| 英德市| 乌鲁木齐县| 洪泽县| 内乡县| 永善县| 江油市| 夹江县| 平和县| 翼城县| 方山县|