找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kolmogorov Operators and Their Applications; Stéphane Menozzi,Andrea Pascucci,Sergio Polidoro Conference proceedings 2024 The Editor(s) (i

[復制鏈接]
樓主: 決絕
21#
發(fā)表于 2025-3-25 04:44:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:07 | 只看該作者
Hypocoercivity Methods for Kinetic Fokker-Planck Equations with Factorised Gibbs States,es the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of t
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:00 | 只看該作者
About the Regularity of Degenerate Non-local Kolmogorov Operators Under Diffusive Perturbations,ither local or non-local. More precisely, we establish that some estimates, such as the Schauder and Sobolev ones, already known for the non-perturbed operator still hold, and with the same constants, when we perturb the Ornstein-Uhlenbeck operator with second order diffusions with coefficients only
27#
發(fā)表于 2025-3-26 07:05:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:42 | 只看該作者
On Averaged Control and Iteration Improvement for a Class of Multidimensional Ergodic Diffusions,ith variable diffusion and drift coefficients both depending on control; the diffusion coefficient must be a scalar function. The convergence of Howard’s iterative reward improvement algorithm to the unique solution of Bellman’s equation is also established.
29#
發(fā)表于 2025-3-26 13:41:41 | 只看該作者
Conference proceedings 2024 arise in several research fields...This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, It? processes, applicat
30#
發(fā)表于 2025-3-26 18:31:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汝州市| 镇江市| 渝北区| 肥东县| 永昌县| 沙河市| 阳信县| 额尔古纳市| 山西省| 武隆县| 六盘水市| 九龙城区| 甘泉县| 肇庆市| 张家港市| 河池市| 高平市| 绥化市| 忻州市| 太仆寺旗| 泗水县| 清河县| 迁西县| 平昌县| 梨树县| 皋兰县| 湘潭县| 读书| 临清市| 公安县| 咸丰县| 昭觉县| 新源县| 城口县| 开封县| 泾源县| 稷山县| 中西区| 子洲县| 西吉县| 贵阳市|