找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復(fù)制鏈接]
樓主: 搖尾乞憐
41#
發(fā)表于 2025-3-28 16:36:33 | 只看該作者
42#
發(fā)表于 2025-3-28 20:44:16 | 只看該作者
Advancing Domain Adaptation of?BERT by?Learning Domain Term SemanticsNatural Language Processing (NLP) tasks. However, these models yield an unsatisfactory results in domain scenarios, particularly in specialized fields like biomedical contexts, where they cannot amass sufficient semantics of domain terms. To tackle this problem, we present a semantic learning method
43#
發(fā)表于 2025-3-28 23:58:52 | 只看該作者
Deep Reinforcement Learning for?Group-Aware Robot Navigation in?Crowdspredictable. Previous research has addressed the problem of navigating in dense crowds by modelling the crowd and using a self-attention mechanism to assign different weights to each individual. However, in reality, crowds do not only consist of individuals, but more often appear as groups, so avoid
44#
發(fā)表于 2025-3-29 05:56:46 | 只看該作者
An Enhanced Distributed Algorithm for?Area Skyline Computation Based on?Apache Sparkta grows larger, these computations become slower and more challenging. To address this issue, we propose an efficient algorithm that uses Apache Spark, a platform for distributed processing, to perform area skyline computations faster and more salable. Our algorithm consists of three main phases: c
45#
發(fā)表于 2025-3-29 10:48:10 | 只看該作者
46#
發(fā)表于 2025-3-29 12:46:16 | 只看該作者
47#
發(fā)表于 2025-3-29 16:34:01 | 只看該作者
PRACM: Predictive Rewards for?Actor-Critic with?Mixing Function in?Multi-Agent Reinforcement Learninnificant progress in tackling cooperative problems with discrete action spaces. Nevertheless, many existing algorithms suffer from significant performance degradation when faced with large numbers of agents or more challenging tasks. Furthermore, some specific scenarios, such as cooperative environm
48#
發(fā)表于 2025-3-29 21:06:12 | 只看該作者
49#
發(fā)表于 2025-3-30 03:56:39 | 只看該作者
Research on?Remote Sensing Image Classification Based on?Transfer Learning and?Data Augmentation sensing image classification algorithm based on convolutional neural net-work architecture needs a significant amount of annotated datasets, and the creation of these training data is labor-intensive and time-consuming. Therefore, using a small sample dataset and a mix of transfer learning and data
50#
發(fā)表于 2025-3-30 04:52:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平凉市| 四会市| 同江市| 甘谷县| 宁阳县| 阿克陶县| 长岛县| 扎鲁特旗| 昭通市| 松阳县| 泰顺县| 延吉市| 天峨县| 和田县| 搜索| 西藏| 萨嘎县| 格尔木市| 方正县| 宁强县| 正安县| 江陵县| 太仓市| 迁安市| 兴义市| 全南县| 甘谷县| 灯塔市| 呼图壁县| 桐城市| 商洛市| 叶城县| 鸡西市| 弋阳县| 云龙县| 启东市| 泰来县| 光泽县| 岳阳县| 子长县| 温泉县|