找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復制鏈接]
樓主: 搖尾乞憐
21#
發(fā)表于 2025-3-25 06:34:48 | 只看該作者
TCMCoRep: Traditional Chinese Medicine Data Mining with?Contrastive Graph Representation LearningM diagnosis in real life. Hybridization of homogeneous and heterogeneous graph convolutions is able to preserve graph heterogeneity preventing the possible damage from early augmentation, to convey strong samples for contrastive learning. Experiments conducted in practical datasets demonstrate our p
22#
發(fā)表于 2025-3-25 08:30:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:49:56 | 只看該作者
PRACM: Predictive Rewards for?Actor-Critic with?Mixing Function in?Multi-Agent Reinforcement Learnin action space, PRACM uses Gumbel-Softmax. And to promote cooperation among agents and to adapt to cooperative environments with penalties, the predictive rewards is introduced. PRACM was evaluated against several baseline algorithms in “Cooperative Predator-Prey” and the challenging “SMAC” scenarios
24#
發(fā)表于 2025-3-25 16:22:35 | 只看該作者
A Cybersecurity Knowledge Graph Completion Method for?Scalable Scenariosn matrix and multi-head attention mechanism to explore the relationships between samples. To mitigate the catastrophic forgetting problem, a new self-distillation algorithm is designed to enhance the robustness of the trained model. We construct knowledge graph based on cybersecurity data, and condu
25#
發(fā)表于 2025-3-25 21:40:07 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:12 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:51 | 只看該作者
28#
發(fā)表于 2025-3-26 11:32:41 | 只看該作者
Importance-Based Neuron Selective Distillation for?Interference Mitigation in?Multilingual Neural Mahe important ones representing general knowledge of each language and the unimportant ones representing individual knowledge of each low-resource language. Then, we prune the pre-trained model, retaining only the important neurons, and train the pruned model supervised by the original complete model
29#
發(fā)表于 2025-3-26 14:41:19 | 只看該作者
Are GPT Embeddings Useful for?Ads and?Recommendation?embedding aggregation, and as a pre-training task (EaaP) to replicate the capability of LLMs, respectively. Our experiments demonstrate that, by incorporating GPT embeddings, basic PLMs can improve their performance in both ads and recommendation tasks. Our code is available at
30#
發(fā)表于 2025-3-26 17:49:50 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 02:13
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
四平市| 白河县| 含山县| 莒南县| 泽州县| 西峡县| 兴隆县| 荣昌县| 玉环县| 乌什县| 九龙县| 额尔古纳市| 仁寿县| 游戏| 耒阳市| 长武县| 柏乡县| 漠河县| 怀宁县| 龙川县| 墨竹工卡县| 凤翔县| 从化市| 广东省| 禹城市| 昌乐县| 广宁县| 宁远县| 大埔县| 孙吴县| 西城区| 儋州市| 桐城市| 扎赉特旗| 永清县| 浦县| 冀州市| 泌阳县| 临江市| 丹寨县| 即墨市|