找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer

[復(fù)制鏈接]
查看: 40333|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:58:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data
副標(biāo)題First China Conferen
編輯Huajun Chen,Heng Ji,Tong Ruan
視頻videohttp://file.papertrans.cn/544/543935/543935.mp4
概述Includes supplementary material:
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer
描述.This book constitutes the refereed proceedings of the first China Conference on Knowledge Graph and Semantic Computing, CCKS, held in Beijing, China, in September 2016..The 19 revised full papers presented together with 6 shared tasks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on knowledge representation and learning; knowledge graph construction and information extraction; linked data and knowledge-based systems; shared tasks..
出版日期Conference proceedings 2016
關(guān)鍵詞Knowledge representation; Knowledge engineering; Knowledge graph; Information extraction; Data mining; Se
版次1
doihttps://doi.org/10.1007/978-981-10-3168-7
isbn_softcover978-981-10-3167-0
isbn_ebook978-981-10-3168-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影響因子(影響力)




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影響因子(影響力)學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data網(wǎng)絡(luò)公開度




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引頻次




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引頻次學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data讀者反饋




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:18 | 只看該作者
Biomedical Event Trigger Detection Based on Hybrid Methods Integrating Word Embeddingsngs are learnt from large scale unlabeled texts and integrated as unsupervised features into other rich features based on dependency parse graphs, and thus a lot of semantic information can be represented. Experimental results show our method outperforms the state-of-the-art systems.
板凳
發(fā)表于 2025-3-22 00:58:56 | 只看該作者
LD2LD: Integrating, Enriching and Republishing Library Data as Linked Datanect researcher data with publication data such as papers, patents and monograph using entity linking methods. After that, we use simple reasoning to predict missing values and enrich the library data with external data. Finally, we republish the integrated and enriched library data as Linked Data.
地板
發(fā)表于 2025-3-22 06:41:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:49:01 | 只看該作者
Boosting to Build a Large-Scale Cross-Lingual Ontologye the performance of ontology building and instance matching. Experiments output an ontology containing over 3,520,000 English instances, 800,000 Chinese instances, and over 150,000 cross-lingual instance alignments. The F1-measure improvement of Chinese . prediction achieve the highest 32%.
6#
發(fā)表于 2025-3-22 15:08:52 | 只看該作者
GRU-RNN Based Question Answering Over Knowledge Baseirs are used to train our multi-step system. We evaluate our system on . and .. The experimental results show that our system achieves comparable performance compared with baseline method with a more straightforward structure.
7#
發(fā)表于 2025-3-22 19:47:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:30 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:16 | 只看該作者
10#
發(fā)表于 2025-3-23 08:11:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 九台市| 东乌珠穆沁旗| 长岭县| 汤原县| 都兰县| 张北县| 磐安县| 泗水县| 元氏县| 剑河县| 遵义市| 肇州县| 青川县| 珲春市| 永靖县| 平邑县| 思茅市| 根河市| 全州县| 丰宁| 新昌县| 日土县| 南皮县| 西充县| 临夏县| 南靖县| 天柱县| 吴堡县| 左云县| 渑池县| 南江县| 工布江达县| 柳州市| 息烽县| 山丹县| 新民市| 扎赉特旗| 凤翔县| 区。| 崇文区|