找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer

[復制鏈接]
查看: 40328|回復: 59
樓主
發(fā)表于 2025-3-21 19:58:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data
副標題First China Conferen
編輯Huajun Chen,Heng Ji,Tong Ruan
視頻videohttp://file.papertrans.cn/544/543935/543935.mp4
概述Includes supplementary material:
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data; First China Conferen Huajun Chen,Heng Ji,Tong Ruan Confer
描述.This book constitutes the refereed proceedings of the first China Conference on Knowledge Graph and Semantic Computing, CCKS, held in Beijing, China, in September 2016..The 19 revised full papers presented together with 6 shared tasks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on knowledge representation and learning; knowledge graph construction and information extraction; linked data and knowledge-based systems; shared tasks..
出版日期Conference proceedings 2016
關鍵詞Knowledge representation; Knowledge engineering; Knowledge graph; Information extraction; Data mining; Se
版次1
doihttps://doi.org/10.1007/978-981-10-3168-7
isbn_softcover978-981-10-3167-0
isbn_ebook978-981-10-3168-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影響因子(影響力)




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data影響因子(影響力)學科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data網(wǎng)絡公開度




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data網(wǎng)絡公開度學科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引頻次




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data被引頻次學科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data年度引用學科排名




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data讀者反饋




書目名稱Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:36:18 | 只看該作者
Biomedical Event Trigger Detection Based on Hybrid Methods Integrating Word Embeddingsngs are learnt from large scale unlabeled texts and integrated as unsupervised features into other rich features based on dependency parse graphs, and thus a lot of semantic information can be represented. Experimental results show our method outperforms the state-of-the-art systems.
板凳
發(fā)表于 2025-3-22 00:58:56 | 只看該作者
LD2LD: Integrating, Enriching and Republishing Library Data as Linked Datanect researcher data with publication data such as papers, patents and monograph using entity linking methods. After that, we use simple reasoning to predict missing values and enrich the library data with external data. Finally, we republish the integrated and enriched library data as Linked Data.
地板
發(fā)表于 2025-3-22 06:41:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:49:01 | 只看該作者
Boosting to Build a Large-Scale Cross-Lingual Ontologye the performance of ontology building and instance matching. Experiments output an ontology containing over 3,520,000 English instances, 800,000 Chinese instances, and over 150,000 cross-lingual instance alignments. The F1-measure improvement of Chinese . prediction achieve the highest 32%.
6#
發(fā)表于 2025-3-22 15:08:52 | 只看該作者
GRU-RNN Based Question Answering Over Knowledge Baseirs are used to train our multi-step system. We evaluate our system on . and .. The experimental results show that our system achieves comparable performance compared with baseline method with a more straightforward structure.
7#
發(fā)表于 2025-3-22 19:47:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:30 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:16 | 只看該作者
10#
發(fā)表于 2025-3-23 08:11:04 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富裕县| 万全县| 尼木县| 沽源县| 景宁| 普定县| 无极县| 旅游| 丹东市| 江都市| 昆山市| 南和县| 扶余县| 东乌| 亚东县| 浦城县| 峨眉山市| 大田县| 德江县| 伊宁市| 余江县| 乌恰县| 周宁县| 罗田县| 房山区| 台江县| 木里| 博乐市| 宕昌县| 定兴县| 喀喇| 噶尔县| 尼玛县| 贵州省| 稷山县| 永靖县| 潢川县| 峨眉山市| 德安县| 岳普湖县| 和平区|