找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence; 8th China Conference Haofen Wang,Xianpei

[復(fù)制鏈接]
查看: 23684|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:41:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence
副標(biāo)題8th China Conference
編輯Haofen Wang,Xianpei Han,Ningyu Zhang
視頻videohttp://file.papertrans.cn/544/543931/543931.mp4
叢書(shū)名稱Communications in Computer and Information Science
圖書(shū)封面Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence; 8th China Conference Haofen Wang,Xianpei
描述This book constitutes the refereed proceedings of the 8th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence, CCKS 2023, held in Shenyang, China, during August 24–27, 2023.?.The 28 full papers included in this book were carefully reviewed and selected from 106 submissions. They were organized in topical sections as follows:??knowledge representation and knowledge graph reasoning; knowledge acquisition and knowledge base construction; knowledge integration and knowledge graph management;?natural language understanding and semantic computing; knowledge graph applications; knowledge graph open resources;?and evaluations..
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computational linguistics; computer networks; data mining; databases; graph theo
版次1
doihttps://doi.org/10.1007/978-981-99-7224-1
isbn_softcover978-981-99-7223-4
isbn_ebook978-981-99-7224-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影響因子(影響力)




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影響因子(影響力)學(xué)科排名




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引頻次




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引頻次學(xué)科排名




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用學(xué)科排名




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence讀者反饋




書(shū)目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:06 | 只看該作者
https://doi.org/10.1007/978-981-99-7224-1artificial intelligence; computational linguistics; computer networks; data mining; databases; graph theo
板凳
發(fā)表于 2025-3-22 00:49:49 | 只看該作者
地板
發(fā)表于 2025-3-22 04:43:04 | 只看該作者
Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence978-981-99-7224-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
5#
發(fā)表于 2025-3-22 12:25:22 | 只看該作者
Dynamic Weighted Neural Bellman-Ford Network for?Knowledge Graph Reasoninggraphs to compute only the most relevant relations and entities. This way, we can integrate multiple reasoning paths more flexibly to achieve better interpretable reasoning, while scaling more easily to more complex and larger KGs. DyNBF consists of two key modules: 1) a transformer-based relation w
6#
發(fā)表于 2025-3-22 13:03:04 | 只看該作者
Exploring the?Logical Expressiveness of?Graph Neural Networks by?Establishing a?Connection with? for the handling of both unary and binary predicates in . formulas. We prove that the proposed models possess the same expressiveness as .. Through experiments conducted on synthetic and real datasets, we validate that our proposed models outperform both ACR-GNN and a widely-used model, GIN, in the
7#
發(fā)表于 2025-3-22 18:18:10 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:16 | 只看該作者
Relation Repository Based Adaptive Clustering for?Open Relation Extractionon boundary, which lead to generate cluster-friendly relation representations to improve the effect of open relation extraction. Experiments on two public datasets show that our method can effectively improve the performance of open relation extraction.
9#
發(fā)表于 2025-3-23 01:40:09 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:47 | 只看該作者
Multi-Perspective Frame Element Representation for?Machine Reading Comprehensiondemonstrate that our proposed model outperforms existing state-of-the-art methods. The superiority of our approach highlights its potential for advancing the field of MRC and showcasing the importance of properly modeling FEs for better semantic understanding.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青州市| 永川市| 磐安县| 澄城县| 舒兰市| 浮山县| 双牌县| 白河县| 双江| 昌乐县| 陵川县| 出国| 洞头县| 武汉市| 江阴市| 隆化县| 保德县| 阜城县| 铁力市| 西丰县| 昌吉市| 凯里市| 日照市| 新河县| 垦利县| 台北市| 科技| 衡阳市| 太仆寺旗| 莱阳市| 简阳市| 平顺县| 河南省| 古浪县| 阜阳市| 太白县| 长海县| 临江市| 突泉县| 衡水市| 府谷县|