找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence; 8th China Conference Haofen Wang,Xianpei

[復(fù)制鏈接]
查看: 23690|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:41:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence
副標(biāo)題8th China Conference
編輯Haofen Wang,Xianpei Han,Ningyu Zhang
視頻videohttp://file.papertrans.cn/544/543931/543931.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence; 8th China Conference Haofen Wang,Xianpei
描述This book constitutes the refereed proceedings of the 8th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence, CCKS 2023, held in Shenyang, China, during August 24–27, 2023.?.The 28 full papers included in this book were carefully reviewed and selected from 106 submissions. They were organized in topical sections as follows:??knowledge representation and knowledge graph reasoning; knowledge acquisition and knowledge base construction; knowledge integration and knowledge graph management;?natural language understanding and semantic computing; knowledge graph applications; knowledge graph open resources;?and evaluations..
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computational linguistics; computer networks; data mining; databases; graph theo
版次1
doihttps://doi.org/10.1007/978-981-99-7224-1
isbn_softcover978-981-99-7223-4
isbn_ebook978-981-99-7224-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影響因子(影響力)




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影響因子(影響力)學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence網(wǎng)絡(luò)公開度




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引頻次




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引頻次學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence讀者反饋




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:06 | 只看該作者
https://doi.org/10.1007/978-981-99-7224-1artificial intelligence; computational linguistics; computer networks; data mining; databases; graph theo
板凳
發(fā)表于 2025-3-22 00:49:49 | 只看該作者
地板
發(fā)表于 2025-3-22 04:43:04 | 只看該作者
Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence978-981-99-7224-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
5#
發(fā)表于 2025-3-22 12:25:22 | 只看該作者
Dynamic Weighted Neural Bellman-Ford Network for?Knowledge Graph Reasoninggraphs to compute only the most relevant relations and entities. This way, we can integrate multiple reasoning paths more flexibly to achieve better interpretable reasoning, while scaling more easily to more complex and larger KGs. DyNBF consists of two key modules: 1) a transformer-based relation w
6#
發(fā)表于 2025-3-22 13:03:04 | 只看該作者
Exploring the?Logical Expressiveness of?Graph Neural Networks by?Establishing a?Connection with? for the handling of both unary and binary predicates in . formulas. We prove that the proposed models possess the same expressiveness as .. Through experiments conducted on synthetic and real datasets, we validate that our proposed models outperform both ACR-GNN and a widely-used model, GIN, in the
7#
發(fā)表于 2025-3-22 18:18:10 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:16 | 只看該作者
Relation Repository Based Adaptive Clustering for?Open Relation Extractionon boundary, which lead to generate cluster-friendly relation representations to improve the effect of open relation extraction. Experiments on two public datasets show that our method can effectively improve the performance of open relation extraction.
9#
發(fā)表于 2025-3-23 01:40:09 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:47 | 只看該作者
Multi-Perspective Frame Element Representation for?Machine Reading Comprehensiondemonstrate that our proposed model outperforms existing state-of-the-art methods. The superiority of our approach highlights its potential for advancing the field of MRC and showcasing the importance of properly modeling FEs for better semantic understanding.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淳化县| 上栗县| 稻城县| 津市市| 德兴市| 临夏县| 建水县| 德昌县| 夏津县| 平原县| 大安市| 湖州市| 云梦县| 云安县| 余江县| 文成县| 安远县| 三江| 禄丰县| 徐汇区| 永和县| 宜兰市| 梁河县| 呼伦贝尔市| 广州市| 河东区| 会东县| 花莲市| 重庆市| 桓台县| 深泽县| 咸丰县| 富蕴县| 奉贤区| 惠水县| 时尚| 武邑县| 台州市| 江油市| 昭通市| 互助|