找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
21#
發(fā)表于 2025-3-25 04:50:59 | 只看該作者
Knot Theory and Its Applications978-0-8176-4719-3Series ISSN 2197-1803 Series E-ISSN 2197-1811
22#
發(fā)表于 2025-3-25 07:59:01 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:17 | 只看該作者
The Jones Revolution,Alexander polynomial, the signature of a knot, ., V. Jones announced the discovery of a new invariant. Instead of further propagating pure theory in knot theory, this new invariant and its subsequent offshoots unlocked connections to various applicable disciplines, some of which we will discuss in the subsequent chapters.
24#
發(fā)表于 2025-3-25 17:48:39 | 只看該作者
Fundamental Problems of Knot Theory,The problems that arise when we study the theory of knots can essentially be divided into two types. On the one hand, there are those that we shall call ., while, in contrast, there are those that we shall call ..
25#
發(fā)表于 2025-3-25 23:28:49 | 只看該作者
Vassiliev Invariants,Towards the end of the 1980s in the midst of the Jones revolution, V.A. Vassiliev introduced a new concept that has had profound significance in the immediate aftermath of the Jones revolution in knot theory [V]. The importance of these so-called Vassiliev invariants lies in that they may be used to study Jones-type invariants more systematically.
26#
發(fā)表于 2025-3-26 01:12:26 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:13 | 只看該作者
Creating Manifolds from Knots, of manifolds (see Definition 8.0.1 below). In this chapter we will show that it is possible to create from an arbitrary knot (or link) a 3-dimensional manifold (usually shortened to 3-manifold). Hence by studying the properties of knots we can gain insight into the properties of 3-manifolds.
30#
發(fā)表于 2025-3-26 17:26:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平武县| 龙里县| 柘城县| 陕西省| 兴宁市| 布拖县| 桐柏县| 根河市| 云阳县| 乳山市| 三河市| 稻城县| 石狮市| 丰城市| 商洛市| 鸡泽县| 绩溪县| 武威市| 建阳市| 轮台县| 尚志市| 隆化县| 白朗县| 昔阳县| 全州县| 万全县| 武乡县| 孟州市| 尼勒克县| 北流市| 高碑店市| 团风县| 墨脱县| 岫岩| 搜索| 塔河县| 内丘县| 诏安县| 青岛市| 新干县| 临沭县|