找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
21#
發(fā)表于 2025-3-25 04:50:59 | 只看該作者
Knot Theory and Its Applications978-0-8176-4719-3Series ISSN 2197-1803 Series E-ISSN 2197-1811
22#
發(fā)表于 2025-3-25 07:59:01 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:17 | 只看該作者
The Jones Revolution,Alexander polynomial, the signature of a knot, ., V. Jones announced the discovery of a new invariant. Instead of further propagating pure theory in knot theory, this new invariant and its subsequent offshoots unlocked connections to various applicable disciplines, some of which we will discuss in the subsequent chapters.
24#
發(fā)表于 2025-3-25 17:48:39 | 只看該作者
Fundamental Problems of Knot Theory,The problems that arise when we study the theory of knots can essentially be divided into two types. On the one hand, there are those that we shall call ., while, in contrast, there are those that we shall call ..
25#
發(fā)表于 2025-3-25 23:28:49 | 只看該作者
Vassiliev Invariants,Towards the end of the 1980s in the midst of the Jones revolution, V.A. Vassiliev introduced a new concept that has had profound significance in the immediate aftermath of the Jones revolution in knot theory [V]. The importance of these so-called Vassiliev invariants lies in that they may be used to study Jones-type invariants more systematically.
26#
發(fā)表于 2025-3-26 01:12:26 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:13 | 只看該作者
Creating Manifolds from Knots, of manifolds (see Definition 8.0.1 below). In this chapter we will show that it is possible to create from an arbitrary knot (or link) a 3-dimensional manifold (usually shortened to 3-manifold). Hence by studying the properties of knots we can gain insight into the properties of 3-manifolds.
30#
發(fā)表于 2025-3-26 17:26:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西丰县| 类乌齐县| 庆阳市| 敖汉旗| 南乐县| 于田县| 蓝田县| 巫山县| 通城县| 东莞市| 巴塘县| 平遥县| 青河县| 雷波县| 潢川县| 陈巴尔虎旗| 金秀| 长葛市| 深泽县| 蓝田县| 蓬莱市| 柘荣县| 民勤县| 信阳市| 财经| 云林县| 衡东县| 峨山| 铜陵市| 文成县| 宁南县| 高阳县| 嘉定区| 富裕县| 浦北县| 隆昌县| 东丰县| 长顺县| 尼勒克县| 射洪县| 伽师县|