找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
31#
發(fā)表于 2025-3-26 23:51:20 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:57 | 只看該作者
33#
發(fā)表于 2025-3-27 09:18:37 | 只看該作者
Torus Knots,ossible. The next most obvious step is to try to group together knots (or links) with a particular property or properties in common, and then try to classify them. In fact, the techniques we have already discussed are sufficient for us to extract the characteristics of certain particular types of knots.
34#
發(fā)表于 2025-3-27 13:14:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:46:02 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:19 | 只看該作者
Knot Tables,nots, these tables were subsequently found to be incomplete. However, considering that these lists were compiled around 100 years ago, they are accurate to a very high degree. In this chapter we shall explain two typical methods of compiling knot tables.
37#
發(fā)表于 2025-3-28 00:55:22 | 只看該作者
Graph Theory Applied to Chemistry, said to be an . of G. The relation/condition mentioned above stipulates that an element, e, of E. is . to elements, say, a and b, of V. (., the condition does not require a and b to be distinct.) The two vertices a and b are said to be endpoints of e. If it is the case that a = b, then e is said to be a loop.
38#
發(fā)表于 2025-3-28 04:47:41 | 只看該作者
39#
發(fā)表于 2025-3-28 10:00:14 | 只看該作者
Tangles and 2-Bridge Knots,not be realized. Nevertheless, the introduction of this new research approach has had a significant impact on knot theory. In this chapter we shall investigate 2-bridge knots (or links), which are a special kind of algebraic knot obtained from trivial tangles.
40#
發(fā)表于 2025-3-28 11:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 永平县| 武安市| 宜春市| 南皮县| 江孜县| 彭州市| 济阳县| 富阳市| 克什克腾旗| 彭山县| 松阳县| 波密县| 文登市| 宜兰市| 日喀则市| 乐昌市| 景谷| 宿州市| 绥德县| 辽阳市| 腾冲县| 同江市| 巴塘县| 调兵山市| 连山| 淮安市| 平舆县| 杭锦旗| 方城县| 沂南县| 密山市| 谷城县| 长武县| 香港 | 浪卡子县| 漯河市| 安福县| 太康县| 察雅县| 泽普县|