找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces; Silvestru Sever Dragomir Book 2019 The Author(s), under exclusive

[復制鏈接]
查看: 21718|回復: 35
樓主
發(fā)表于 2025-3-21 18:31:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces
編輯Silvestru Sever Dragomir
視頻videohttp://file.papertrans.cn/543/542236/542236.mp4
概述Presents recent research on Kato‘s inequality for the benefit of a large class of researchers working on operator inequalities.Provides complete proofs of the main results that will allow researchers
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces;  Silvestru Sever Dragomir Book 2019 The Author(s), under exclusive
描述The aim of this book is to present results related to Kato‘s famous inequality for bounded linear operators on complex Hilbert spaces obtained by the author in a sequence of recent research papers. As Linear Operator Theory in Hilbert spaces plays a central role in contemporary mathematics, with numerous applications in fields including Partial Differential Equations, Approximation Theory, Optimization Theory, and Numerical Analysis,?the volume is?intended for use by both researchers in various fields and postgraduate students and scientists applying inequalities in their specific areas.?For the sake of completeness, all the results presented are completely proved and the original references where they have been firstly obtained are mentioned.
出版日期Book 2019
關鍵詞Furuta‘s inequality; Hilbert-Schmidt operators; trace operators; Bochner integral; Banach spaces; Operat
版次1
doihttps://doi.org/10.1007/978-3-030-17459-0
isbn_softcover978-3-030-17458-3
isbn_ebook978-3-030-17459-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces影響因子(影響力)




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces影響因子(影響力)學科排名




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces網(wǎng)絡公開度




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces網(wǎng)絡公開度學科排名




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces被引頻次




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces被引頻次學科排名




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces年度引用




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces年度引用學科排名




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces讀者反饋




書目名稱Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:48:55 | 只看該作者
Silvestru Sever Dragomirpeople with active lifestyles are much healthier. It would not be wrong to say that inactivity, a problem that can be solved by movement, is the biggest public health problem in this era..In this section, the description, types, and prescription of the exercise that should be done regularly both in
板凳
發(fā)表于 2025-3-22 02:10:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:25 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:50 | 只看該作者
s. This chapter is focused on the use of resveratrol (3,5,4′-trihydroxystilbene), a phytochemical well known for its cardioprotective, antioxidant, anti-inflammatory, anti-atherosclerotic properties . and .. Existing systemic studies revealed that resveratrol could target various signaling pathways
8#
發(fā)表于 2025-3-22 21:33:20 | 只看該作者
Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces
9#
發(fā)表于 2025-3-23 02:12:55 | 只看該作者
10#
發(fā)表于 2025-3-23 08:05:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汉寿县| 克什克腾旗| 诸暨市| 沽源县| 阿克苏市| 佳木斯市| 富平县| 宾阳县| 浦江县| 河间市| 常宁市| 宕昌县| 肇庆市| 定州市| 平塘县| 伊春市| 兴文县| 溧水县| 太康县| 资源县| 芒康县| 垣曲县| 龙口市| 利津县| 沙洋县| 通江县| 杭锦旗| 浦城县| 连平县| 桂阳县| 崇仁县| 通州市| 南昌市| 涟水县| 镇巴县| 新蔡县| 乡宁县| 富宁县| 舟山市| 大宁县| 连州市|