找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kato‘s Type Inequalities for Bounded Linear Operators in Hilbert Spaces; Silvestru Sever Dragomir Book 2019 The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 你太謙虛
11#
發(fā)表于 2025-3-23 11:41:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:29 | 只看該作者
Introduction,We denote by . the Banach algebra of all bounded linear operators on a complex Hilbert space
13#
發(fā)表于 2025-3-23 20:04:56 | 只看該作者
14#
發(fā)表于 2025-3-23 23:08:26 | 只看該作者
,Generalizations of Furuta’s Type,In this chapter we present a two parameter generalization of Kato due to Furuta. Applications for functions of bounded linear operators defined by power series and inequalities for four bounded operators generalizing Furuta’s inequality and provide some general . and . inequalities are given as well.
15#
發(fā)表于 2025-3-24 02:49:39 | 只看該作者
Integral Inequalities,In this chapter, after recalling some fundamental facts on Bochner integral for measurable functions with values in Banach spaces, we provide an integral version of Kato’s inequality. Several . and . inequalities with applications for the . are also given.
16#
發(fā)表于 2025-3-24 07:29:31 | 只看該作者
Silvestru Sever DragomirPresents recent research on Kato‘s inequality for the benefit of a large class of researchers working on operator inequalities.Provides complete proofs of the main results that will allow researchers
17#
發(fā)表于 2025-3-24 11:48:38 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/k/image/542236.jpg
18#
發(fā)表于 2025-3-24 15:46:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:19:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:45:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广西| 红原县| 安远县| 德昌县| 黄骅市| 白朗县| 获嘉县| 奈曼旗| 八宿县| 化德县| 玉屏| 卫辉市| 扬中市| 瑞金市| 班玛县| 鹿邑县| 安康市| 临汾市| 云南省| 瑞安市| 富川| 海南省| 鄯善县| 肃宁县| 布尔津县| 赤壁市| 昭觉县| 武威市| 怀仁县| 枞阳县| 谷城县| 渝北区| 祁东县| 凤山县| 桃园市| 明溪县| 依安县| 青阳县| 都匀市| 美姑县| 双桥区|