找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?the-Bochner Function Spaces; Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera

[復(fù)制鏈接]
查看: 50379|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:53:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱K?the-Bochner Function Spaces
編輯Pei-Kee Lin
視頻videohttp://file.papertrans.cn/542/541570/541570.mp4
概述Contains recent results of the geometric properties in the K(oe)the-Bochner spaces.Each section is independent of each other, allowing the different levels of readership
圖書封面Titlebook: K?the-Bochner Function Spaces;  Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera
描述This monograph isdevoted to a special area ofBanach space theory-the Kothe- Bochner function space. Two typical questions in this area are: Question 1. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Question 2. Let 1~ p~ 00, E a Kothe function space, and X a Banach space. Does either E or X contain an lp-sequence ifthe Kothe-Bochner function space E(X) has an lp-sequence? To solve the above two questions will not only give us a better understanding of the structure of the Kothe-Bochner function spaces but it will also develop some useful techniques that can be applied to other fields, such as harmonic analysis, probability theory, and operator theory. Let us outline the contents of the book. In the first two chapters we provide some some basic results forthose students who do not have any background in Banach space theory. We present proofs of Rosenthal‘s l1-theorem, James‘s theorem (when X is separable), Kolmos‘s theorem, N. Randriananto
出版日期Book 2004
關(guān)鍵詞Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
版次1
doihttps://doi.org/10.1007/978-0-8176-8188-3
isbn_softcover978-1-4612-6482-8
isbn_ebook978-0-8176-8188-3
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱K?the-Bochner Function Spaces影響因子(影響力)




書目名稱K?the-Bochner Function Spaces影響因子(影響力)學(xué)科排名




書目名稱K?the-Bochner Function Spaces網(wǎng)絡(luò)公開度




書目名稱K?the-Bochner Function Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱K?the-Bochner Function Spaces被引頻次




書目名稱K?the-Bochner Function Spaces被引頻次學(xué)科排名




書目名稱K?the-Bochner Function Spaces年度引用




書目名稱K?the-Bochner Function Spaces年度引用學(xué)科排名




書目名稱K?the-Bochner Function Spaces讀者反饋




書目名稱K?the-Bochner Function Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:08 | 只看該作者
Book 2004. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Que
板凳
發(fā)表于 2025-3-22 04:20:47 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:46 | 只看該作者
https://doi.org/10.1007/978-0-8176-8188-3Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
5#
發(fā)表于 2025-3-22 11:09:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:04 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:39 | 只看該作者
978-1-4612-6482-8Springer Science+Business Media New York 2004
8#
發(fā)表于 2025-3-22 23:50:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:03 | 只看該作者
10#
發(fā)表于 2025-3-23 09:37:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平凉市| 大足县| 阿巴嘎旗| 清水河县| 永新县| 永吉县| 赣榆县| 思南县| 民乐县| 卓尼县| 苗栗县| 剑川县| 宾川县| 禹城市| 遂昌县| 滦平县| 宜川县| 紫金县| 衢州市| 石柱| 泸定县| 泰州市| 特克斯县| 宁陕县| 定远县| 小金县| 武强县| 瑞安市| 昭平县| 都昌县| 当雄县| 江阴市| 聂拉木县| 道孚县| 栾城县| 屯昌县| 西丰县| 商洛市| 巴里| 犍为县| 南木林县|