找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?the-Bochner Function Spaces; Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera

[復(fù)制鏈接]
查看: 50383|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:53:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱K?the-Bochner Function Spaces
編輯Pei-Kee Lin
視頻videohttp://file.papertrans.cn/542/541570/541570.mp4
概述Contains recent results of the geometric properties in the K(oe)the-Bochner spaces.Each section is independent of each other, allowing the different levels of readership
圖書封面Titlebook: K?the-Bochner Function Spaces;  Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera
描述This monograph isdevoted to a special area ofBanach space theory-the Kothe- Bochner function space. Two typical questions in this area are: Question 1. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Question 2. Let 1~ p~ 00, E a Kothe function space, and X a Banach space. Does either E or X contain an lp-sequence ifthe Kothe-Bochner function space E(X) has an lp-sequence? To solve the above two questions will not only give us a better understanding of the structure of the Kothe-Bochner function spaces but it will also develop some useful techniques that can be applied to other fields, such as harmonic analysis, probability theory, and operator theory. Let us outline the contents of the book. In the first two chapters we provide some some basic results forthose students who do not have any background in Banach space theory. We present proofs of Rosenthal‘s l1-theorem, James‘s theorem (when X is separable), Kolmos‘s theorem, N. Randriananto
出版日期Book 2004
關(guān)鍵詞Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
版次1
doihttps://doi.org/10.1007/978-0-8176-8188-3
isbn_softcover978-1-4612-6482-8
isbn_ebook978-0-8176-8188-3
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱K?the-Bochner Function Spaces影響因子(影響力)




書目名稱K?the-Bochner Function Spaces影響因子(影響力)學(xué)科排名




書目名稱K?the-Bochner Function Spaces網(wǎng)絡(luò)公開度




書目名稱K?the-Bochner Function Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱K?the-Bochner Function Spaces被引頻次




書目名稱K?the-Bochner Function Spaces被引頻次學(xué)科排名




書目名稱K?the-Bochner Function Spaces年度引用




書目名稱K?the-Bochner Function Spaces年度引用學(xué)科排名




書目名稱K?the-Bochner Function Spaces讀者反饋




書目名稱K?the-Bochner Function Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:08 | 只看該作者
Book 2004. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Que
板凳
發(fā)表于 2025-3-22 04:20:47 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:46 | 只看該作者
https://doi.org/10.1007/978-0-8176-8188-3Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
5#
發(fā)表于 2025-3-22 11:09:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:04 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:39 | 只看該作者
978-1-4612-6482-8Springer Science+Business Media New York 2004
8#
發(fā)表于 2025-3-22 23:50:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:03 | 只看該作者
10#
發(fā)表于 2025-3-23 09:37:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
壶关县| 瑞昌市| 赞皇县| 山阳县| 罗甸县| 东宁县| 洱源县| 贵溪市| 乌鲁木齐市| 罗平县| 攀枝花市| 洛川县| 丽江市| 渭南市| 凤山市| 容城县| 保山市| 清苑县| 揭东县| 沾化县| 阜新市| 营山县| 鞍山市| 遂宁市| 怀宁县| 永平县| 探索| 东至县| 清镇市| 金平| 建宁县| 姜堰市| 通辽市| 洛宁县| 泰和县| 兴业县| 新津县| 庆阳市| 鄂托克旗| 西青区| 调兵山市|