找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復(fù)制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 22:53:04 | 只看該作者
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a K?hler immersion for a large class of Hartogs domains whose K?hler potentials are given locally by . for suitable function . (see Proposition 5.2).
32#
發(fā)表于 2025-3-27 05:10:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:02 | 只看該作者
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a K?hler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
34#
發(fā)表于 2025-3-27 11:00:15 | 只看該作者
Book 2018ccount of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a fini
35#
發(fā)表于 2025-3-27 14:06:59 | 只看該作者
1862-9113 ledge of complex and K?hler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calab
36#
發(fā)表于 2025-3-27 20:37:08 | 只看該作者
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
37#
發(fā)表于 2025-3-28 00:56:04 | 只看該作者
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
38#
發(fā)表于 2025-3-28 05:37:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:00 | 只看該作者
978-3-319-99482-6Springer Nature Switzerland AG 2018
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南和县| 横峰县| 荣昌县| 宁武县| 水城县| 昌平区| 浑源县| 昌吉市| 石景山区| 河东区| 凌云县| 黄山市| 黔江区| 海兴县| 通道| 福安市| 巴彦淖尔市| 益阳市| 郓城县| 鸡泽县| 滨州市| 洱源县| 常山县| 东乡族自治县| 定襄县| 利辛县| 岗巴县| 衡阳市| 台北市| 连平县| 彩票| 柘城县| 银川市| 南平市| 威信县| 望奎县| 澳门| 宜兰县| 宁武县| 二连浩特市| 土默特左旗|