找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復(fù)制鏈接]
樓主: CLOG
11#
發(fā)表于 2025-3-23 13:19:19 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:48 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:02 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:36 | 只看該作者
The Diastasis Function,r manifolds into complex space forms. In Sect. 1.1 we define the diastasis function and summarize its basic properties, while in Sect. 1.2 we describe the diastasis functions of complex space forms, which represent the basic examples of K?hler manifolds. Finally, in Sect. 1.3 we give the formal defi
17#
發(fā)表于 2025-3-24 13:22:04 | 只看該作者
,Calabi’s Criterion,nfinite dimensional complex space form. In particular, Calabi provides an algebraic criterion to find out whether a complex manifold admits or not such an immersion. Sections 2.1 and 2.2 are devoted to illustrate Calabi’s criterionfor K?hler immersions into the complex Euclidean space and nonflat co
18#
發(fā)表于 2025-3-24 18:41:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:23:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双柏县| 中宁县| 平度市| 南乐县| 南开区| 开原市| 临西县| 眉山市| 梨树县| 昌黎县| 商都县| 错那县| 申扎县| 广德县| 镇康县| 耒阳市| 仙桃市| 沙坪坝区| 雷波县| 宣武区| 河源市| 玛多县| 高淳县| 泸水县| 东宁县| 蓬安县| 大安市| 岑溪市| 六盘水市| 克东县| 台山市| 永善县| 临夏市| 大庆市| 莱西市| 永泰县| 临泉县| 江永县| 益阳市| 平阴县| 洞口县|