找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復制鏈接]
查看: 34653|回復: 38
樓主
發(fā)表于 2025-3-21 18:04:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms
編輯Andrea Loi,Michela Zedda
視頻videohttp://file.papertrans.cn/542/541469/541469.mp4
概述Winner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
叢書名稱Lecture Notes of the Unione Matematica Italiana
圖書封面Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms;  Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com
描述.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a K?hler immersion into another, and to decades of further research on the subject. .Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader‘s understanding. Apart from the section on K?hler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and K?hler geometry...?.
出版日期Book 2018
關(guān)鍵詞Complex space forms; Homogeneous metrics; K?hler metrics; K?hler immersions; K?hler-Einstein metrics
版次1
doihttps://doi.org/10.1007/978-3-319-99483-3
isbn_softcover978-3-319-99482-6
isbn_ebook978-3-319-99483-3Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms影響因子(影響力)




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms影響因子(影響力)學科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms網(wǎng)絡公開度




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms網(wǎng)絡公開度學科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms被引頻次




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms被引頻次學科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms年度引用




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms年度引用學科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms讀者反饋




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:23:57 | 只看該作者
Andrea Loi,Michela Zeddaand a detailed bibliography make it easy to go beyond the presented material if desired..From the reviews of the first edition:.?“…readers are likely to regard the book as an ideal reference. Indeed the monogra978-3-030-61873-5978-3-030-61871-1Series ISSN 2199-3130 Series E-ISSN 2199-3149
地板
發(fā)表于 2025-3-22 08:03:18 | 只看該作者
5#
發(fā)表于 2025-3-22 11:34:50 | 只看該作者
6#
發(fā)表于 2025-3-22 15:31:48 | 只看該作者
,Homogeneous K?hler Manifolds,eorem 3.2), will be applied in Sect. 3.2 to classify homogeneous K?hler manifolds admitting a K?hler immersion into . or ., .?≤. (Theorem 3.3).In the last three sections we consider K?hler immersions of homogeneous K?hler manifolds into ., .?≤.. The general case is discussed in Sect. 3.3, while in S
7#
發(fā)表于 2025-3-22 19:49:28 | 只看該作者
,K?hler–Einstein Manifolds,s into complex space forms. We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies K?hler–Einstein manifolds admitting a K?hler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what is
8#
發(fā)表于 2025-3-22 22:39:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:28 | 只看該作者
10#
發(fā)表于 2025-3-23 05:43:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马山县| 剑河县| 沐川县| 景洪市| 若尔盖县| 永昌县| 苏州市| 吉木萨尔县| 仙桃市| 定结县| 青海省| 隆尧县| 汉川市| 应城市| 黄山市| 芦溪县| 蕲春县| 宁化县| 沁水县| 密山市| 石景山区| 吉林市| 台南县| 德江县| 洞口县| 连城县| 二连浩特市| 三亚市| 开原市| 石林| 三原县| 云阳县| 吉水县| 金沙县| 长治市| 抚州市| 武汉市| 峨眉山市| 乌拉特后旗| 德庆县| 泸定县|