找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Iwasawa Theory 2012; State of the Art and Thanasis Bouganis,Otmar Venjakob Conference proceedings 2014 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: mature
51#
發(fā)表于 2025-3-30 08:34:08 | 只看該作者
Contributions in Mathematical and Computational Scienceshttp://image.papertrans.cn/i/image/476608.jpg
52#
發(fā)表于 2025-3-30 14:40:34 | 只看該作者
53#
發(fā)表于 2025-3-30 18:39:25 | 只看該作者
Iwasawa ,-Invariants of ,-Adic Hecke ,-FunctionsThis article surveys recent developments on Iwasawa .-invariants of .-adic Hecke .-functions for CM fields following Hida.
54#
發(fā)表于 2025-3-31 00:21:42 | 只看該作者
Nearly Overconvergent Modular FormsWe introduce and study finite slope nearly overconvergent (elliptic) modular forms. We give an application of this notion to the construction of the Rankin-Selberg .-adic L-function on the product of two eigencurves..
55#
發(fā)表于 2025-3-31 04:14:46 | 只看該作者
On ,-Zeta FunctionWe present in this note a definition of zeta function of the field . which incorporates all .-adic L-functions of Kubota-Leopoldt for all . and also so called Soulé classes of the field .. This zeta function is a measure, which we construct using the action of the absolute Galois group . on fundamental groups.
56#
發(fā)表于 2025-3-31 06:54:13 | 只看該作者
57#
發(fā)表于 2025-3-31 12:40:36 | 只看該作者
The Structure of Selmer Groups of Elliptic Curves and Modular Symbolshe main conjecture nor the non-degeneracy of the .-adic height pairing, and study the structure of Selmer groups (see Theorems . and .), using these analytic elements and Kolyvagin systems of Gauss sum type.
58#
發(fā)表于 2025-3-31 17:01:07 | 只看該作者
59#
發(fā)表于 2025-3-31 20:37:31 | 只看該作者
Conference proceedings 2014 different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory..Iwasawa theory is a modern and powerful b
60#
發(fā)表于 2025-4-1 00:23:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德令哈市| 江安县| 邵阳市| 郁南县| 黑河市| 青神县| 康定县| 武安市| 平泉县| 海城市| 南溪县| 利津县| 汾阳市| 乌兰县| 岱山县| 隆子县| 岳池县| 比如县| 松原市| 中山市| 彩票| 抚远县| 乐业县| 淳安县| 巫山县| 同仁县| 富裕县| 全州县| 玛纳斯县| 周口市| 普格县| 离岛区| 汪清县| 永安市| 潮安县| 嘉鱼县| 常德市| 凌云县| 随州市| 沭阳县| 正蓝旗|