找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Iwasawa Theory 2012; State of the Art and Thanasis Bouganis,Otmar Venjakob Conference proceedings 2014 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: mature
31#
發(fā)表于 2025-3-26 21:48:17 | 只看該作者
Overview of Some Iwasawa Theoryon of the class group in .-extensions and the case of elliptic curves. For both, we give a description of the basic results and reach a formulation of the main conjecture. Furthermore a sketch of the leading term formula for the characteristic series for an elliptic curve, a hint at generalisations
32#
發(fā)表于 2025-3-27 04:29:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:53:33 | 只看該作者
On Extra Zeros of ,-Adic ,-Functions: The Crystalline Caseath 133:1573–1632, 2011) to include non-critical values. We prove that this conjecture is compatible with Perrin-Riou’s theory of .-adic .-functions. Namely, using Neková?’s machinery of Selmer complexes we prove that our .-invariant appears as an additional factor in the Bloch–Kato type formula for
34#
發(fā)表于 2025-3-27 13:03:31 | 只看該作者
On Special ,-Values Attached to Siegel Modular Forms Siegel modular forms. These results are all stated over an algebraic closure of .. In this article we work out the field of definition of these special values. In this way we extend some previous results obtained by Sturm, Harris, Panchishkin, and B?cherer-Schmidt.
35#
發(fā)表于 2025-3-27 16:45:49 | 只看該作者
Modular Symbols in Iwasawa Theory., there is an explicit conjecture of the third author relating the geometry of modular curves and the arithmetic of cyclotomic fields, and it is proven in many instances by the work of the first two authors. The paper is divided into three parts: in the first, we explain the conjecture of the third
36#
發(fā)表于 2025-3-27 19:46:27 | 只看該作者
On ,-Adic Artin ,-Functions II Mazur and Wiles in Mazur and Wiles (1984). Wiles later proved a far-reaching generalization involving .-adic .-functions for Hecke characters of finite order for a totally real number field in Wiles (1990). As we discussed in Greenberg (1983), an analogue of Iwasawa’s conjecture for .-adic Artin .-
37#
發(fā)表于 2025-3-27 23:50:56 | 只看該作者
The ,-Adic Height Pairing on Abelian Varieties at Non-ordinary Primes norm subgroup. In this paper, we generalize his construction to the non-ordinary case and compare it with that of Zarhin-Nekovár?. As an application, we generalize the .-adic Gross-Zagier formula in Kobayashi (Invent Math 191(3):527–629, 2013) to newforms for ..(.) of weight 2 with . Fourier coeffi
38#
發(fā)表于 2025-3-28 04:35:41 | 只看該作者
Iwasawa Modules Arising from Deformation Spaces of ,-Divisible Formal Group Laws universal deformation space of . give rise to pseudocompact modules over the Iwasawa algebra of the automorphism group of .. Passing to global rigid analytic sections, we obtain representations which are topologically dual to locally analytic representations. In studying these, one is led to the co
39#
發(fā)表于 2025-3-28 09:39:24 | 只看該作者
The Structure of Selmer Groups of Elliptic Curves and Modular Symbolsnts. In our previous paper Kurihara (Refined Iwasawa theory for .-adic representations and the structure of Selmer groups. Münster J Math ., to appear), assuming the main conjecture and the non-degeneracy of the .-adic height pairing, we proved that the structure of the Selmer group with respect to
40#
發(fā)表于 2025-3-28 10:39:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高清| 宁阳县| 布拖县| 东平县| 新疆| 沧源| 安国市| 荆州市| 泰和县| 水富县| 宜良县| 抚宁县| 枞阳县| 临高县| 富川| 绩溪县| 平罗县| 浦北县| 民丰县| 精河县| 沙河市| 松溪县| 赤城县| 兴宁市| 凤庆县| 措美县| 西乌珠穆沁旗| 十堰市| 云和县| 武山县| 侯马市| 临清市| 南乐县| 云安县| 衡水市| 康保县| 靖边县| 双鸭山市| 特克斯县| 中宁县| 娱乐|