找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Galois Theory; Gunter Malle,B. Heinrich Matzat Book 2018Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2018

[復(fù)制鏈接]
樓主: Autopsy
11#
發(fā)表于 2025-3-23 11:38:55 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:52 | 只看該作者
13#
發(fā)表于 2025-3-23 18:28:38 | 只看該作者
Embedding Problems,The question of whether a given Galois extension can be embedded into a larger one is called an embedding problem.
14#
發(fā)表于 2025-3-23 22:59:09 | 只看該作者
Additive Polynomials,In this chapter we construct polynomials with prescribed Galois group in positive characterisic.
15#
發(fā)表于 2025-3-24 05:09:56 | 只看該作者
Rigid Analytic Methods,The solution of the inverse problem of Galois theory over the field C.t / was achieved by a blend of topological and analytical methods.
16#
發(fā)表于 2025-3-24 06:50:43 | 只看該作者
Action of Braids,itz (1891), goes back to results of Fried (1977, 1984) and Fried and Biggers (1982). A variant more suitable for the realization of groups as Galois groups was proposed by Matzat (1989) and subsequently developed in papers of Matzat (1991a) and in geometric context, of Fried and Voolklein (1991) (see also the survey article Matzat (1991c)).
17#
發(fā)表于 2025-3-24 14:20:16 | 只看該作者
Gunter Malle,B. Heinrich MatzatExplores new developments in the field of Inverse Galois Theory.Presents the most successful known existence theorems and construction methods for Galois extensions.Introduces solutions of embedding p
18#
發(fā)表于 2025-3-24 17:15:37 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/i/image/474664.jpg
19#
發(fā)表于 2025-3-24 22:18:03 | 只看該作者
https://doi.org/10.1007/978-3-662-55420-312F12, 12-XX, 20-XX; Inverse Galois theory; Rigid Group generators; Braid groups; Embedding problems; Mod
20#
發(fā)表于 2025-3-25 02:07:38 | 只看該作者
1439-7382 ds for Galois extensions.Introduces solutions of embedding pThis second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as it
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武平县| 黄骅市| 高邑县| 政和县| 错那县| 日照市| 内丘县| 吉木乃县| 洪洞县| 惠州市| 鹤壁市| 金门县| 张家口市| 增城市| 太仓市| 商洛市| 绥德县| 濮阳县| 桂平市| 太和县| 崇文区| 三门峡市| 阿坝县| 万载县| 平谷区| 砀山县| 富锦市| 茂名市| 商丘市| 漳浦县| 闸北区| 修武县| 邵东县| 璧山县| 当雄县| 静安区| 高平市| 宜兴市| 新密市| 牟定县| 南投市|