找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Galois Theory; Gunter Malle,B. Heinrich Matzat Book 2018Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2018

[復制鏈接]
查看: 50330|回復: 37
樓主
發(fā)表于 2025-3-21 19:46:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inverse Galois Theory
編輯Gunter Malle,B. Heinrich Matzat
視頻videohttp://file.papertrans.cn/475/474664/474664.mp4
概述Explores new developments in the field of Inverse Galois Theory.Presents the most successful known existence theorems and construction methods for Galois extensions.Introduces solutions of embedding p
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Inverse Galois Theory;  Gunter Malle,B. Heinrich Matzat Book 2018Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2018
描述This second edition addresses the question of which finite groups occur as Galois groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K, as well as its finite epimorphic images, generally referred to as the inverse problem of Galois theory..In the past few years, important strides have been made in all of these areas. The aim of the book is to provide a systematic and extensive overview of these advances, with special emphasis on the rigidity method and its applications. Among others, the book presents the most successful known existence theorems and construction methods for Galois extensions and solutions of embedding problems, together with a collection of the current Galois realizations..?.There have been two major developments since the first edition of this book was released. The first is the algebraization of the Katz algorithm for (linearly) rigid generating systems of finite groups; the second is the emergence of a modular Galois theory. The latter has led to new construction methods for additive polynomials with given Galois group over fields of positive characteristic. Both methods h
出版日期Book 2018Latest edition
關鍵詞12F12, 12-XX, 20-XX; Inverse Galois theory; Rigid Group generators; Braid groups; Embedding problems; Mod
版次2
doihttps://doi.org/10.1007/978-3-662-55420-3
isbn_softcover978-3-662-58555-9
isbn_ebook978-3-662-55420-3Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag GmbH Germany, part of Springer Nature 2018
The information of publication is updating

書目名稱Inverse Galois Theory影響因子(影響力)




書目名稱Inverse Galois Theory影響因子(影響力)學科排名




書目名稱Inverse Galois Theory網(wǎng)絡公開度




書目名稱Inverse Galois Theory網(wǎng)絡公開度學科排名




書目名稱Inverse Galois Theory被引頻次




書目名稱Inverse Galois Theory被引頻次學科排名




書目名稱Inverse Galois Theory年度引用




書目名稱Inverse Galois Theory年度引用學科排名




書目名稱Inverse Galois Theory讀者反饋




書目名稱Inverse Galois Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:21:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:58:54 | 只看該作者
地板
發(fā)表于 2025-3-22 06:22:07 | 只看該作者
Book 2018Latest editionlgebraization of the Katz algorithm for (linearly) rigid generating systems of finite groups; the second is the emergence of a modular Galois theory. The latter has led to new construction methods for additive polynomials with given Galois group over fields of positive characteristic. Both methods h
5#
發(fā)表于 2025-3-22 10:24:10 | 只看該作者
from energy planning agencies, ministries of finance and economic development, electric utilities, refineries and State Oil Companies, and specialized energy pl978-3-540-12879-3978-3-642-48337-0Series ISSN 0075-8442 Series E-ISSN 2196-9957
6#
發(fā)表于 2025-3-22 16:00:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:16:21 | 只看該作者
8#
發(fā)表于 2025-3-22 22:57:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:17 | 只看該作者
978-3-662-58555-9Springer-Verlag GmbH Germany, part of Springer Nature 2018
10#
發(fā)表于 2025-3-23 07:01:17 | 只看該作者
Inverse Galois Theory978-3-662-55420-3Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
开原市| 光山县| 桦甸市| 昌江| 噶尔县| 成都市| 资兴市| 宁德市| 德惠市| 临泉县| 东莞市| 云林县| 嫩江县| 监利县| 永寿县| 松原市| 洞口县| 仪陇县| 图木舒克市| 嫩江县| 嘉兴市| 铜鼓县| 剑川县| 铁岭市| 栖霞市| 宜君县| 苏尼特右旗| 玛纳斯县| 潜山县| 筠连县| 西充县| 南阳市| 丰顺县| 邹城市| 射洪县| 九龙坡区| 广宁县| 黄浦区| 新泰市| 喀喇沁旗| 田东县|