找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory of Singular Integral Operators with Shift; Victor G. Kravchenko,Georgii S. Litvinchuk Book 1994 Springer Scienc

[復制鏈接]
查看: 43055|回復: 36
樓主
發(fā)表于 2025-3-21 19:05:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to the Theory of Singular Integral Operators with Shift
編輯Victor G. Kravchenko,Georgii S. Litvinchuk
視頻videohttp://file.papertrans.cn/475/474430/474430.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Introduction to the Theory of Singular Integral Operators with Shift;  Victor G. Kravchenko,Georgii S. Litvinchuk Book 1994 Springer Scienc
出版日期Book 1994
關鍵詞DEX; Finite; Integral equation; Singular integral; algebra; dynamical systems; equation; form; function; func
版次1
doihttps://doi.org/10.1007/978-94-011-1180-5
isbn_softcover978-94-010-4515-5
isbn_ebook978-94-011-1180-5
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書目名稱Introduction to the Theory of Singular Integral Operators with Shift影響因子(影響力)




書目名稱Introduction to the Theory of Singular Integral Operators with Shift影響因子(影響力)學科排名




書目名稱Introduction to the Theory of Singular Integral Operators with Shift網(wǎng)絡公開度




書目名稱Introduction to the Theory of Singular Integral Operators with Shift網(wǎng)絡公開度學科排名




書目名稱Introduction to the Theory of Singular Integral Operators with Shift被引頻次




書目名稱Introduction to the Theory of Singular Integral Operators with Shift被引頻次學科排名




書目名稱Introduction to the Theory of Singular Integral Operators with Shift年度引用




書目名稱Introduction to the Theory of Singular Integral Operators with Shift年度引用學科排名




書目名稱Introduction to the Theory of Singular Integral Operators with Shift讀者反饋




書目名稱Introduction to the Theory of Singular Integral Operators with Shift讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:00:41 | 只看該作者
Overview: 978-94-010-4515-5978-94-011-1180-5
板凳
發(fā)表于 2025-3-22 02:50:32 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:13 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:07 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:14 | 只看該作者
The Noether theory of singular integral functional operators with continuous coefficients on a non-In the preceding two chapters, the SIFO of first order. where a..,. are scalar or matrix coefficients, was studied in the so-called continuous case, i.e., when the following three conditions are fulfilled simultaneously:
8#
發(fā)表于 2025-3-23 00:48:47 | 只看該作者
https://doi.org/10.1007/978-94-011-1180-5DEX; Finite; Integral equation; Singular integral; algebra; dynamical systems; equation; form; function; func
9#
發(fā)表于 2025-3-23 05:21:26 | 只看該作者
The Noether theory in algebras of singular integral functional operators,) concerning the Noetherity criterion and the index formula, which arise naturally in an algebraic treatment. We therefore devote the essential part of this chapter (Sections 1-3) to the analysis of the simplest models of FO and SIFO algebras.
10#
發(fā)表于 2025-3-23 05:50:46 | 只看該作者
The Noether theory in algebras of singular integral functional operators,e pose a more modest problem in order to illustrate the methods of solving the subproblems...III) and.I) -.of problems.and.(see Section 1 of Chapter 1) concerning the Noetherity criterion and the index formula, which arise naturally in an algebraic treatment. We therefore devote the essential part o
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
柞水县| 大石桥市| 泰和县| 鹤岗市| 杨浦区| 静乐县| 保定市| 海原县| 南部县| 常山县| 沙雅县| 保靖县| 荣成市| 安康市| 大埔区| 奉化市| 江永县| 兰州市| 阿克陶县| 远安县| 介休市| 许昌县| 苗栗市| 霍林郭勒市| 宜兰市| 灯塔市| 扶余县| 泗水县| 临漳县| 晋中市| 鹿泉市| 手机| 承德县| 大厂| 田东县| 山阳县| 江永县| 惠安县| 清水河县| 辉南县| 乐东|