找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory of Singular Integral Operators with Shift; Victor G. Kravchenko,Georgii S. Litvinchuk Book 1994 Springer Scienc

[復(fù)制鏈接]
查看: 43059|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:05:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift
編輯Victor G. Kravchenko,Georgii S. Litvinchuk
視頻videohttp://file.papertrans.cn/475/474430/474430.mp4
叢書(shū)名稱(chēng)Mathematics and Its Applications
圖書(shū)封面Titlebook: Introduction to the Theory of Singular Integral Operators with Shift;  Victor G. Kravchenko,Georgii S. Litvinchuk Book 1994 Springer Scienc
出版日期Book 1994
關(guān)鍵詞DEX; Finite; Integral equation; Singular integral; algebra; dynamical systems; equation; form; function; func
版次1
doihttps://doi.org/10.1007/978-94-011-1180-5
isbn_softcover978-94-010-4515-5
isbn_ebook978-94-011-1180-5
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift影響因子(影響力)




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift被引頻次




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift被引頻次學(xué)科排名




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift年度引用




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift年度引用學(xué)科排名




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift讀者反饋




書(shū)目名稱(chēng)Introduction to the Theory of Singular Integral Operators with Shift讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:41 | 只看該作者
Overview: 978-94-010-4515-5978-94-011-1180-5
板凳
發(fā)表于 2025-3-22 02:50:32 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:13 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:07 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:14 | 只看該作者
The Noether theory of singular integral functional operators with continuous coefficients on a non-In the preceding two chapters, the SIFO of first order. where a..,. are scalar or matrix coefficients, was studied in the so-called continuous case, i.e., when the following three conditions are fulfilled simultaneously:
8#
發(fā)表于 2025-3-23 00:48:47 | 只看該作者
https://doi.org/10.1007/978-94-011-1180-5DEX; Finite; Integral equation; Singular integral; algebra; dynamical systems; equation; form; function; func
9#
發(fā)表于 2025-3-23 05:21:26 | 只看該作者
The Noether theory in algebras of singular integral functional operators,) concerning the Noetherity criterion and the index formula, which arise naturally in an algebraic treatment. We therefore devote the essential part of this chapter (Sections 1-3) to the analysis of the simplest models of FO and SIFO algebras.
10#
發(fā)表于 2025-3-23 05:50:46 | 只看該作者
The Noether theory in algebras of singular integral functional operators,e pose a more modest problem in order to illustrate the methods of solving the subproblems...III) and.I) -.of problems.and.(see Section 1 of Chapter 1) concerning the Noetherity criterion and the index formula, which arise naturally in an algebraic treatment. We therefore devote the essential part o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 17:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南郑县| 临澧县| 色达县| 双牌县| 西充县| 霍州市| 云和县| 济宁市| 宜昌市| 昌吉市| 宜都市| 娱乐| 建宁县| 富川| 长春市| 汕尾市| 泰来县| 大竹县| 灌阳县| 岳普湖县| 中西区| 多伦县| 金溪县| 泸水县| 苏尼特左旗| 澜沧| 霸州市| 金沙县| 城步| 昌吉市| 江华| 贵阳市| 新宾| 桑日县| 比如县| 县级市| 临洮县| 疏附县| 石林| 仁怀市| 巴东县|