找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Mori Program; Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra

[復(fù)制鏈接]
樓主: retort
21#
發(fā)表于 2025-3-25 06:34:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:40:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:33:15 | 只看該作者
24#
發(fā)表于 2025-3-25 19:01:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:51:03 | 只看該作者
Cone Theorem, the same cohomological arguments developed for the proofs of the base point freeness theorem and the non-vanishing theorem of the previous chapter. We note that our point of view for discussing the behavior of divisors following Kawamata—Reid—Shokurov—Kollar is “dual” to the original approach of Mo
26#
發(fā)表于 2025-3-26 01:23:46 | 只看該作者
27#
發(fā)表于 2025-3-26 06:33:34 | 只看該作者
Cone Theorem Revisited,method of .” to produce rational curves of some bounded degree (with respect to an ample divisor or to the canonical divisor). This method leads to the result of Miyaoka—Mori [1] claiming the . of Mori fiber spaces, yielding the generalization by Kawamata [13] claiming that (every irreducible compon
28#
發(fā)表于 2025-3-26 08:55:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:29 | 只看該作者
Birational Relation among Minimal Models,n dimension 2 in a fixed birational equivalence class is unique. This is no longer true in dimension 3 or higher, i.e., there may exist many minimal models in general even in a fixed birational equivalence class, and here arises a need to study the birational relation among them.
30#
發(fā)表于 2025-3-26 17:58:44 | 只看該作者
Birational Relation Among Mori Fiber Spaces,i [1], which gives an algorithm for factoring a given birational map between Mori fiber spaces into a sequence of certain elementary transformations called “..” While it is a higher-dimensional analogue of the Castelnuovo—Noether theorem (cf. Theorem 1-8-8), its true meaning becomes clearer in the f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜泉县| 精河县| 周口市| 郁南县| 九龙坡区| 苍山县| 郯城县| 裕民县| 福清市| 苍南县| 永登县| 益阳市| 常熟市| 江安县| 通辽市| 班玛县| 阿克| 尚志市| 高陵县| 怀远县| 德格县| 扎兰屯市| 衡东县| 藁城市| 台前县| 大化| 浦城县| 阿克| 边坝县| 清河县| 黄骅市| 大悟县| 华宁县| 泾川县| 合水县| 巴塘县| 涟源市| 建瓯市| 明光市| 南康市| 忻州市|