找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Mori Program; Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra

[復制鏈接]
查看: 27430|回復: 54
樓主
發(fā)表于 2025-3-21 17:16:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to the Mori Program
編輯Kenji Matsuki
視頻videohttp://file.papertrans.cn/475/474375/474375.mp4
概述The first book in this extremely important and active area of research; likely to become a key resource.Author presents the theory in an easy and understandable way with lots of background motivation.
叢書名稱Universitext
圖書封面Titlebook: Introduction to the Mori Program;  Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra
出版日期Textbook 2002
關(guān)鍵詞Dimension; Grad; algebra; algebraic geometry; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-1-4757-5602-9
isbn_softcover978-1-4419-3125-2
isbn_ebook978-1-4757-5602-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Introduction to the Mori Program影響因子(影響力)




書目名稱Introduction to the Mori Program影響因子(影響力)學科排名




書目名稱Introduction to the Mori Program網(wǎng)絡(luò)公開度




書目名稱Introduction to the Mori Program網(wǎng)絡(luò)公開度學科排名




書目名稱Introduction to the Mori Program被引頻次




書目名稱Introduction to the Mori Program被引頻次學科排名




書目名稱Introduction to the Mori Program年度引用




書目名稱Introduction to the Mori Program年度引用學科排名




書目名稱Introduction to the Mori Program讀者反饋




書目名稱Introduction to the Mori Program讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:49 | 只看該作者
Flip,direction toward (existence of flip). Our hope is that this introductory book will expose the reader to the subject without too much technical difficulty and motivate him to venture into the core of the theory afterwards.
板凳
發(fā)表于 2025-3-22 04:17:13 | 只看該作者
地板
發(fā)表于 2025-3-22 05:32:59 | 只看該作者
Base Point Freeness of Adjoint Linear Systems,orem, i.e., the Kawamata—Viehweg vanishing theorem. Our viewpoint centering on adjoint linear systems, is in the spirit of Ein—Lazarsfeld [1], which applied the . to solve Fujita’s conjecture in dimension 3.
5#
發(fā)表于 2025-3-22 10:19:31 | 只看該作者
Logarithmic Mori Program,esent some of the subtleties that inevitably arise as we go from the usual category to the logarithmic category. There are some open conjectures even in dimension 3, though their statements are the natural generalizations in the logarithmic category, according to Iitaka’s philosophy, of the corresponding ones in the usual category.
6#
發(fā)表于 2025-3-22 13:49:26 | 只看該作者
s development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of phys
7#
發(fā)表于 2025-3-22 18:27:26 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:01 | 只看該作者
Kenji Matsukim many disciplines of Solid Earth Geophysics.Introduces an a.The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties o
9#
發(fā)表于 2025-3-23 03:21:41 | 只看該作者
Kenji Matsukis development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of phys
10#
發(fā)表于 2025-3-23 07:46:58 | 只看該作者
Kenji MatsukiSouth America and all species from Brazil, but for most groups, the scope was expanded to encompass all species in South America, and, in many cases, to include terrestrial species of orders that include both terrestrial and aquatic taxa. In no case is a taxonomic reVlSlon of any group undertaken, a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
河北区| 通河县| 涿鹿县| 隆尧县| 南部县| 威海市| 太和县| 年辖:市辖区| 凯里市| 晋中市| 锦屏县| 合阳县| 阜城县| 蓬溪县| 克东县| 尼勒克县| 香格里拉县| 麻阳| 民县| 武鸣县| 铁岭市| 宿迁市| 介休市| 图木舒克市| 荔浦县| 若尔盖县| 安塞县| 奉节县| 西贡区| 曲水县| 札达县| 阳信县| 崇州市| 犍为县| 密云县| 通渭县| 阿图什市| 新建县| 横山县| 阳原县| 礼泉县|