找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復(fù)制鏈接]
樓主: patch-test
51#
發(fā)表于 2025-3-30 11:56:25 | 只看該作者
52#
發(fā)表于 2025-3-30 13:46:02 | 只看該作者
The Fundamental Operations,tially as the union of a sequence of sets .., . ∈ On which were so defined that . ∈ .. iff there exists a wff .(.., .., ..., ..) having no free variables other than .., .., ... , .. and there exist .. , ..., .. ∈ .. such that ..
53#
發(fā)表于 2025-3-30 20:03:43 | 只看該作者
The Arithmetization of Model Theory,a standard model of ZF means in particular that ? is a model of Axiom 5, the Axiom Schema of Replacement. Since Axiom 5 is a schema “M is a standard model of ZF” is a meta-statement asserting that a certain infinite collection of sentences of ZF hold. Can this metastatement be formalized in ZF, that
54#
發(fā)表于 2025-3-30 21:36:08 | 只看該作者
Forcing,h a predicate will be defined in this section. When this predicate holds we say that < {.., ..., ..}, {.., ..., ..}> forces ?.?. The ordered pair <{.., ..., ..}, {.., ..., ..}> is called a forcing condition.
55#
發(fā)表于 2025-3-31 04:18:06 | 只看該作者
56#
發(fā)表于 2025-3-31 05:54:53 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:22 | 只看該作者
Gaisi Takeuti,Wilson M. Zaringics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are prov
58#
發(fā)表于 2025-3-31 15:23:15 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:00 | 只看該作者
60#
發(fā)表于 2025-4-1 01:10:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
施秉县| 合阳县| 达尔| 额尔古纳市| 巨野县| 郎溪县| 霞浦县| 锡林浩特市| 九龙县| 高阳县| 奈曼旗| 定陶县| 灵宝市| 蛟河市| 乌苏市| 呼图壁县| 壶关县| 高邑县| 青铜峡市| 青河县| 定结县| 望谟县| 田阳县| 台南市| 高邑县| 邵阳县| 临汾市| 天柱县| 神木县| 崇义县| 密山市| 潮安县| 大兴区| 安仁县| 文登市| 马龙县| 唐山市| 荆门市| 米泉市| 育儿| 黄浦区|