找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復(fù)制鏈接]
樓主: patch-test
31#
發(fā)表于 2025-3-26 23:44:01 | 只看該作者
https://doi.org/10.1007/978-1-4684-9915-5arithmetic; axiom of choice; function; logic; ordinal; set; set theory
32#
發(fā)表于 2025-3-27 03:26:29 | 只看該作者
Language and Logic,The language of our theory consists of
33#
發(fā)表于 2025-3-27 06:54:16 | 只看該作者
The Elementary Properties of Classes,In this section we will introduce certain properties of classes with which the reader is already familiar. The immediate consequences of the definitions are for the most part elementary and easily proved; consequently they will be left to the reader as exercises.
34#
發(fā)表于 2025-3-27 12:39:15 | 只看該作者
Ordinal Arithmetic,In Section 7 we defined . + 1 to be . ∪ {.}. We proved that . + 1 is an ordinal, that is, . + 1 is a transitive set that is well ordered by the ∈-relation. As a well ordered set . + 1 has an initial segment . and its “terminal” segment beginning with . consists of just a single element, namely ..
35#
發(fā)表于 2025-3-27 17:40:42 | 只看該作者
Cardinal Numbers,The equivalence of sets is basic to the theory of cardinal numbers. Two sets are equivalent, or equipollent, provided there exists a one-to-one correspondence between them.
36#
發(fā)表于 2025-3-27 18:29:28 | 只看該作者
37#
發(fā)表于 2025-3-27 23:06:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:20 | 只看該作者
39#
發(fā)表于 2025-3-28 08:32:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:25 | 只看該作者
,Cohen’s Method,In proving that the AC and the GCH are consistent with ZF G?del used the so called method of internal models. From the assumption that the universe . is a model of ZF G?del prescribed a method for producing a submodel . that is also a model of ., AC and GCH. This submodel is defined as the class of all sets having a certain property i.e. ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 乌拉特前旗| 临桂县| 高青县| 晋宁县| 平度市| 齐河县| 桑植县| 芦溪县| 灌云县| 云和县| 阜新市| 旬阳县| 江都市| 大英县| 榆社县| 高唐县| 康乐县| 广州市| 同仁县| 集贤县| 大悟县| 定结县| 巨鹿县| 龙南县| 沧源| 辽源市| 慈利县| 东兰县| 墨玉县| 新巴尔虎右旗| 额尔古纳市| 汶川县| 咸阳市| 乌恰县| 泽州县| 开鲁县| 和平区| 容城县| 青河县| 怀柔区|